{ "cells": [ { "cell_type": "raw", "id": "28ff78cb-2ad5-483e-99f8-1853fc8d559e", "metadata": {}, "source": [ "Author: Preeti Dubey\n", "Date: Dec 13, 2023\n", "Title: Dose response analysis of OXT-OXTR complex formation for HEK293 cells" ] }, { "cell_type": "raw", "id": "dbdfc22b-9c83-4f0b-bfd5-2069fa4cefcf", "metadata": {}, "source": [ "Here we are developing a code for oxytocin doses range and its effect on OXTR complex formation in HEK293 cells." ] }, { "cell_type": "code", "execution_count": 1, "id": "859cbd63-b37f-4144-a80f-a828f4921b9d", "metadata": {}, "outputs": [], "source": [ "# first thing first, let's inmport the python packages here\n", "\n", "import numpy as np # for numbers and data\n", "from scipy.integrate import odeint # for integration of ode\n", "import matplotlib.pyplot as plt # for datavisualization or creating plots\n" ] }, { "cell_type": "code", "execution_count": 3, "id": "87f3e340-427c-427c-bf95-a096f2c62eca", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAGRCAYAAAANT/l3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB060lEQVR4nO3de3wkVZn/8c83gzBkRlEX8SdoEpUFkatyEfCGiK6IoiteFgMqCtGVi6DrBaOASkRduSiuugO7ikxQQAFhhUW8DCLKAuIooHjDySAogiDIhHGAeX5/nNOTSk910tVJJ+mZ7/v1qld1nzr9dKVmIM+cqvMcRQRmZmZmZmW6ZvsEzMzMzGzucrJoZmZmZg05WTQzMzOzhpwsmpmZmVlDThbNzMzMrCEni2ZmZmbWkJNFMzMzM2vIyaKZmZnNaZKOlXS+pFslhaRlTXxmP0nfkXSvpFFJv5b0uZJ+XZKOkXSLpJWSbpN0sqQFDeJuLemiHHeFpKsk7d2gb9tizyS5KLeZmZnNZZICuAe4AdgZuD8i+ibofzxwAnA5cCkwCvQAO0TEq+v6fgY4CrgQuAzYBjgSuArYJyJWF/o+HbgWeBg4DbgPOAzYDtg3Ir4zU7FnkpNFMzMzm9MkPS0ibs2vbwIWNkoWJe0DXAEcFxEfmyTutsCNwIURcUCh/Ujgs0B/RJxTaD8POADYOSKW5raFwM3ASuAZkROrdsaeab4NbWZmZnNaLVFs0geBPwMnQUq4JDXKdw4ERBrJKzqDNBp5UK0h3zreH1hSS+byuT0AnAlsBew6Q7FnlJNFMzMzWyfkpOsFwP8Bb5N0O/A34AFJX5P0xLqP7AqsJt3+XSMiVgJLGZ+g7QBsBPy45KuvKcSbidgzaoPZ+mIzMzNb/0haMtHxiNhrCuG3BOYBuwMvBT4B/Ax4PvAuYAdJu0TEaO6/OXB3RPy9JNbtwJ6SNoyIVblvrb2sL8AWhbZ2xp5RThY7VFdXV2y88cazfRpmZmatuLJNcR+d908ADouIM/P7CyXdDxwPvBn4Qm7vBsqSOUjPCdb6rMp7GvQv9qXwul2xZ5STxQ618cYbs2LFitk+DTMzs0okjU5x9HAiD+b9auDsumNnkZLFvRhLFkeBzRrEml/oU9xv1ETfdseeUbP6zKKkrSR9VNI1ku6S9DdJSyUNTlCDyHWTzMzMrMwf8v7ektu/f8z7xxXa7gA2lVSWpG1Buo28qtC31l7WF8bfRm5n7Bk12xNc3gocA/wO+CjwXuBXwInAjySNu8+a6yb9D6kG0fGk2kVfA55cEvtU4BTgF6SaRufn/pfUz4rKtY1+BOwBfCqfx0Lg8jwFfyZjm5mZWQsi4k5gOfB4SfW3bWu5wp8LbdeRcqHdih0lzQd2Aq4vNN9Iuk28R8lX7573xf7tjD2zImLWNmAXYJOS9hOBAI4otO2T2z7cRNxtSUPQ36hrPzLHeGNd+3nAI8BOhbaFwAgpedVMxK6ydXd3h5mZWacBVsTUcoebgGUTHK/lEMfUtZ9c/3sa2H6S3+kH1bWfn3+n71hoq/1O/3VdvtC22BP87DuQJvL8F3AJcHF+fTTwrFav+Zwsyi1pe+DnwH9GxDty2/dIidoWEfFwLlQ5GoXq54XPnwgMAi+IiKsK7fOBvwBXRsTLc9uC3HZ1RLy4Ls6HSSOez4mIa9sdu4oFCxaEn1k0M7NOk59ZLH1sa4LPHAz05rdHAhuSkj+AkYg4u9D3MaTSOVsBi0izoZ8H9APfA14aEY8U+p8OHEFaZeVS0iorRwFXA3vH+FVWtiSVwnmIdJfxftIqK9sD+0XE5XXn3bbYhc9tnPu9HXhG46sIpKTzC8AZEfHgJH3HTCW7b9cG7EvKuj+S3y8g3Xq+OF+M2/PxUdJt6CfWff5yUna+UUnsq4G7Cu/3yLFOLOn7knzs8JmIXWXzyKKZmXUiWhhZBJbk35ll25KS/pvmpOgO0mzjW4EhYH5J33nAe0h3+/6ec4xTSKvElJ3LNsA3gb/mPOSHpKX7yvq2LXbu/xbSc5qP5G31JFut3x+AtzR7/efcbGhJ84DjSMlhbRmc9a5u0mR1qLq7Z20GvZmZ2YyKirOnI+Ju4F/zNlnfR0ijlCdP1jf3/yXwqib7ti129t+khFmkmeA/II2q/pq0lraAxwNbk56dfD6wMSk/ORP4cjNfMueSRdKyOLsDH4yIX+U2100yMzMzW9u1wOeAiyJiwufT8iN8rybdyt+l2S+YU8mipI+R7u0vioiTCofWu7pJk/0rasGCBXPvYVMzMzObSftExPea7RxprenFwOIqJfxmu3TOGpJOAD4EfAl4R91h100yMzMzK6iSKE7ls3MiWcz1E48HvgIcmh+AXSNcN8nMzMxsVsx6sijpOOAE0u3lQ6KkFE52NulBzbfXtdceXr200HYu6YHPo+v6HkZ6RnC41pCHZC8B9pK0Y+G8FgKHAr8hPQ8wE7HNzGw9MTw8TF9fH11dXfT19TE8PNxRx232STqula3yF1Wdvj6dG3A4KfEaAd4EHFS3vaTQ9zHAL0lTvr9AulW9OH/+u8C8utin52MXkBKzk0m1i5YAXXV9tyTNGroT+ADwTuCnpBnZ/1Ry3m2L3ezm0jlmZu21ePHi6O3tDUnR29sbixcvnrbjixcvju7u7nElYLq7u9f0mevHp4IpFuX2Ni7HKJbDaXqr/D2z/EN+ufgXsWRbUtd/vaib1MzmZNHMbGpmM5nr7e0t/b3X29vbEcenwsnitOZRk9VVLK21WPV75uQKLjY5r+BiZuu74eFhBgcHWb58OT09PQwNDdHf39/U8eHhYQYGBhgdHStI0d3dzaJFi+jv76evr4+RkZG1vrO3t5dly5ZN+XhXVxdlv38lsXr16jl/fCpaWcHFykn6Uiufi4hDqn7AWwduHlk0s/VZu0f2JJUelzQtx2d7ZNAji96qbLN+At5a25wsmtm6bqLbxFNNdmY7mZvtZw79zKK3Ktusn4C31jYni2bW6abyzGC7R/ZmItlq5wSamTjeKieL07eRJgdX3ip/z2z/oN5a25wsmlknm+0JIHMhmVtfOVmcvo3WZkM/XPl7ZvsH9dba5mTRzOa6qdxGnmxkcCZG9qw9nCxO34ZnQ9tEPBvazOayyWYbTzbbdrLZxLXvaHU2tM0ez4aePpKWkP4xVElEvKjS9zhZ7ExOFs1sLptqaZnJkk3rXE4WO8+sL/dnZmadaaLl4JYvX176mVr70NAQ3d3d4451d3czNDQEQH9/P4sWLaK3txdJ9Pb2OlE0myUeWexQHlk0s9k01aLWtRi+Tbz+8chi+0naCzgM2BZYCGwPvC4fviAiHqgSb1ZHFiVtJemjkq6RdJekv0laKmlQ0oR/kSS9U1LkbdOS412SjpF0i6SVkm6TdHKjuJK2lnSRpHslrZB0laS9G/RtW2wzs04wODg4LlEEGB0dZXBwEJh85BDS6OGyZctYvXo1y5Ytc6JoNg0knQh8F/gXYAfgqRHxIHAi8CXgVVVjzvZt6LcCxwC/Az4KvJe03vKJwI8kbVz2IUmbAycBE2XGp5LWa/4FcCRwPnAUcImkcT+3pKcDPwL2AD6Vz2MhcLmkfWY4tpnZnDCV28y+jWw28yS9EvggoLwVXZjbXlk58CxP+d4F2KSk/UTS7J4jGnzuQuCnwNm536Z1x7clTQ//Rl37kbn/G+vazyPVHtqp0LYQGCElr5qJ2FU2l84xs3aaah1Es0Zw6Zx25lVX5BzlbuBMCqVygEPy+19UjTurI4sRcX1E3Fdy6Ny8367+gKR/BvYH3k5KwsocSMqeT6trPwMYBQ4qxFuQ4y2JiKWFc3uAdKG3AnadodhmZnPCdNxmNrMZtzPpH24fIN1yLrot759UNehs34Zu5Ml5f2exUdJjgM8B/xkR107w+V1J2fO4PhGxEljK+ARtB2Aj4Mclca4pxJuJ2GZmc4JvM5t1pNrcid+XHJtft2/aBi2fTptImgccBzwMnFN3+JOkBPfYScJsDtwdEX8vOXY7sKekDSNiVe5bay/rC7DFDMVeIxfabKj+X/RmZtOpp6endDZzT0/Pmtf9/f1ODs3mljtJecULgcvrjr0i7/9UNehcHFk8DdgdOC4iflVrlLQn6dbzuxvcui7qBsqSOYCVhT7FfVn/+r7tjm1mNmMmmsDi28xmHemHpEfljiUNvAEgaTEwQLpFfVXVoHNqZFHSx4AjgEURcVKhfUPSM4HfiYivNhFqFNiswbH5hT7F/UZN9G137DUiYq8G3wGkOosTHTczm0h9ncSRkREGBgaA8SOGroNo1lFOBV5PGgzch7GlAA/M+9XAZ6oGnTMji5JOAD5EeiDzHXWHDweeAZwiacvaBjw6H3+qpKcV+t8BbCqpLEnbgnQbeVWhb629rC+Mv43czthmZjNisgks4DqINndIOlbS+ZJuzfWVl1X47HpTlzkiriOV8gvGyufUttXAuyLiJ83Gq5kTI4uSjgeOB74CHJqn1hf1khLbyxqEuBZYQSpJA3Ad8FJgNwrDrZLmAzsBPyh89kbSbeI9SuLunvfXF9raGdvMbEZMNoHFbI75OHAPcAPw2GY/VFeXeWGDbqeSEqwLgZOBbfL7Z0naJyJWF+LVaic/TKqdfB9ppZTLJe0bEd+ZwdilIuLzed7DIcAzc/MvgS9HxE3NxCgLOts1gY4jZcBfAboa9NkReG3J9v382UOAVxf6b8/EtRAPqms/n1SGZ8dCW60W4q8ZX2exbbGrbK6zaGZT4TqJNltooc4i8LTC65uAZU1+br2vyzwd22wniofnCzYCvIlUo7C4vWSSz3+57A8/Hzs9H7sAOJSU0T8ELKlPSoEtSf9iuZNUm+id+S/Xw8A/zWTsZjcni2Y2mcWLF0dvb29Iit7e3jUFtWvHJiq6bdYurSSLMf73alPJIvDPOfnarVG+wNgiIM+va59PumN5aaFtAWly6ndLvuvDOc5uMxF7gp/5H0n1nfcrObZfPvaPla/5VP7AproV/vAabUua/HxZsjgPeA8pG/876dnAU4CFDWJtA3wT+Ctp0skPgX0a9G1b7GY3J4tmNpFmksGJkkmzdpmJZBF4TP7d/PmYIF8glZd5BNioJMbVwF2F93vkGCeW9H1JPnb4TMSe4OeujU5+reTYcD52XtVrrhzAOsyCBQtixYoVs30aZjZH9fX1ldZJ7O3tZdmyZTN/QmaZpNVMUL4lJqkGIukm0uBM3wR9vgC8GnhGRNwn6cvAm4EnRMTdhX43AptFxBNLYpwHvI6U7K2SdADwdeCdEfGFur7PBG4GToqID7Y79gQ/9whpYZODI+KcumMHkhLG2yKid6I49ebEBBczM5tensBi66tCXeb+mL66zKtoX13mVmI3UktM7yo59pe8b1T+ryEni2Zm66BmVmAxmyUrJxs9bNX6WJe5zkrgUcAuwBV1x3bO+1VUNGfqLJqZ2fTxCiy2nlrf6zL/mlRT8f2S9tOY/YD3k559/HUTccZxsmhmtg7q7+9n0aJF9Pb2Ione3l4WLVrkwtq2rivWZf5NYXtNPn4t8PNC/+ty/92KQQq1k4u1kFupy9yu2I1cnPePzq9X5O1i0qQfSBNuK/EElw7lCS5mZtaJJI1GROkKJk1+vuEEF0k7ksrH1Dsc2At4K3BvRFyU+28P/Ay4MCIOKMQ5EvgsaaLI4kL7+aTE89kR8bPctpA0AeXvwNZ5xndbY09wbR6Tv7OXsVVcipYDO0TE/RPFWSuuk8XO5GTRzIaHh712s3WcVpJFSQeTEiBIRa03JNU4BhiJiLMn+fyXKZkNnY+dDhxBKuB9KWOrrFwN7B3jV1nZkjQ6+RBpdZb7SausbE+qbXj5TMWe4GftA85hbESy5hrSpJ/fNxNnXEwni53JyaLZ+m14eJiBgYFx6zt3d3f7VrPNeS0mi0uAFzY4fGUT5Xa+TONkcR5wNDAA9AF3A+cCx0XEAyWxtgE+kc9nQ9IShCdEyXJ87Yw9mVxy55mk0cWbI+IXVWOsieVksTM5WTRbv7mOonWqqd6GtvEkfY20otylZQnotHyHk8XO5GTRbP3W1dVF2f+/JbF69eqST5jNDU4Wp1cuch6kkjhXkBLHiyPinun6Ds+GNjPrQI3qJbqOotl65+XAfwP3Aa8A/gv4k6TvSHqnpM2n+gWzmixK2krSRyVdI+kuSX+TtFTSoKQFhX6SdJCkr0n6raRRScslXSzpOQ1id0k6RtItklZKuk3SycW4df23lnSRpHslrZB0laS9Zzq2mVkzXEfRzAAi4n8j4jDgSaRnHU8n1WTcO79eLulHkv5N0tNb+Y5ZvQ0t6ROk6ewXk2bpPAS8CHg9qQ7S7hHxYK5J9CCwFPgW8HvSRXkHsDnwpuL08xz7M6QZRxeS6i1tQ5pBdRWwT90MpKeTZiA9DJxGys4PA7YD9q1/sLSdsZvl29Bm5tnQ1ol8G3pmSHo2cADwz6RC5bWE7ybgG8BXImJZU7FmOVncBfhN/dqNkk4EBoEjI+JzkjYAnhsRV9b1eyKp/tAjwJNqSZqkbUkFLhvVNuovLrCdF/Q+ANg5Ipbmtlpto5Wkhcij3bGrcLJoZmadyMnizJO0FfBaUuK4Mylx/EhEfLSZz8/qbeiIuL7BIt/n5v12ud/D9Ylibr8TuJK09mJx/cUDSVPFT6v7yBmktRUPqjXkW8f7A0tqyVyO/QBwJrAVsOsMxTYzMzObVhHx64j4eETsCvQAxwC/bPbzc3WCy5Pz/s4m+64C/lpo2xVYTbr9u0ZErCTdyi4maDuQFu7+cUnsawrxZiL2GpKWTLSVfcbM1i3Dw8P09fXR1dVFX18fw8PDs31KZtZhJC2U9FJJ+0taEBF/iIjPRsT5zcaYc8liLmB5HOkZv3Mm6fty0pqL5+ZkrWZz0gLdfy/52O2khb03LPSttZf1hfELe7cztpkZMFZ0e2RkhIhgZGSEgYEBJ4xm1pCkN0q6VNJX8vsnk+aAXEaaZ3FzK7Oj51yySLq9uzupuvmvGnWS9I/A2aSk6z11h7tJ6yiWWVnoU9yX9a/v2+7Ya0TEXhNtDb7fzNYRg4OD41ZnARgdHWVwcHCWzsjMOsBrgH8qvH8XaeUY5e0pwAerBt2g6gckPYX0fGAAd0XEbVVjTBD7Y6Q1FBdFxEkT9Hsq8N18DvtGxF11XUYZ/wxj0fxCn+J+oyb6tju2mRkAy5cvr9RuZgbsmPc/yPu9SbnSNcBTgf8HvKRq0ElHFiVtIOn1ki6QdDewjPS83nXAMkn3SPqmpDfkWcstkXQC8CHgS6SSOI369QHfBxYCL4mIG0u63UG6HVyWpG1Buo28qtC31l7WF8bfRm5nbDMzwEW3zawltcGs2kBerWTOvsB7c9tTqgZtmCzmJPFdwB+ArwKvAh7P2FBmbXssqWL4OcAfJB1VNWmUdDxwPPAV4NBGpWQk9ZISxU1IieJPG4S8Lv9su9V9fj6wE3B9oflG0m3iPUri7J73xf7tjG1mBrjotpm1ZOO8X53vBG8M3BYR9zM2OKWqQScaWfwFcAopS60lhquA3zI2svg7UiHt2vHNgFPzZ5si6TjgBNLzh4cUC1rX9esFlgCPA14aET+ZIOy5pEz66Lr2w0jPCK55QjyXsbkE2EtSbfi2VgvxUOA3jJ/53M7YZmYA9Pf3s2jRInp7e5FEb28vixYtctFtM5vI3Xn/NtJiIQC1+R+1UcfKa0Y3LMqttDA1pITwq6SVU35auMVa67cR8CxgP+BfgKcDERHzJv1y6XDgc8By4MOkkjRFd0bEFZIeDfyMdL/9dMoTrCty3cVa7NNJzz9eCFxKWmXlKOBqYO+6VVa2zDEfIiW795OSv+2B/SLi8rrzblvsZrkot5mZdSIX5W4fSReR6jsXk7vjImJI0geAjwM/iojnVYo7QbL4A2CoajKTy9l8ICJe0ETfLwNvnqDLlRGxV35O8feThHtRRCwpxJ5HGv0bIM0Eups0KnhcHvGrP5dtgE+Q1lXcELgBOKFsOb52xm6Wk0UzM+tEThbbR9LupMf1avMq/gQ8KyLulPRj4DnAv0fE+yvFnc3l/qx1ThbNzKwTOVlsL0lbk+aS3Ad8s1YxRtLrSI8f/l+za0KvielksTM5WTQzs07kZLHzzMWi3GZm6wUv52dm7SBpS0lDki6S9B1JG0l6Qd42nDxCXbyJRhYl3VoxXkTE06uehFXnkUWzzlZbzq+4Skt3d7dnPNs6zyOL7SXp7cBnSQuviDTZ5VGk5xf/AXhtRFxYKeYkyeLq/CXFmjyNPiCanAVtU+dk0ayz9fX1MTIyslZ7b28vy5Ytm/kTMpshThbbR9LzSGUGayUNIedmkhaRyvadFRGHVInb7G3oYoJYX5S7eEJmZtYEL+dnZm3wXlJut4pU2q/ourzfpWrQKiut3Ad8GVha9UvMzGy8np6e0pFFL+dnZlOwB2mA71hScvjywrHav0SfVDXoZMniN0jL/G0APIaxwtOnAxdExCNVv9DMzNJyfmXPLHo5PzObgk3y/uclx2p3kxdWDTrhbeiIeB1p1ZRPkpaHEfBc4GvAMkkflPSEql9qZra+83J+ZtYGtaX8dio59sK8v7vk2ISarrOYl/U7iLTW4A65OUj3xQci4uyqX26t8wQXMzPrRJ7g0j6F5f5Gga8DbyLlaicB7wPmARdGxGurxG26zmJE/D0i/gvYDfiv2nmRlq97apUvrZG0laSPSrpG0l2S/iZpqaRBSWv9RZK0da4ZdK+kFZKukrR3g9hdko6RdIuklZJuk3RyWdy5FNvMzMzGk3SspPMl3SopJC1r0E+SDpL0NUm/lTQqabmkiyU9p8Fn1qV84fN5vzFwMGMTlI9l7NHDL1SIl86rwsji5sA7SOshP4GxGdC3k0YWL6v85dIngMOBi4FrgIeAFwGvJ91v3z0iHsx9nw5cCzwMnEaacHMYsB2wb/06y5I+Q3rG8kLgMmAb0qjoVcA+EbG60HfOxG6WRxbNzKwTtTKyKClIt1hvAHYG7o+IvpJ+84EHSZNxvwX8njSh4x3A5sCbImJx3WfWqXwh51bvy29rSV4tZ/tkRBzbTJxxImLCDXgecC7wd+ARYHXefgC8Dpg3WYwJYu8CbFLSfmL+AY8otJ2Xv3+nQttCYAT4FTnxze3b5nP8Rl3cI3PcN9a1z4nYVbbu7u4wMzPrNMCKqJ4vPK3w+iZgWYN+GwAvLGl/IulZvTuBrkL7OpkvAPsC5wM35+3rpISzpXxtwtvQkn4KXAm8llT9eyXpFvSzIuIFEXF+TGFGdERcHxH3lRw6N++3y+exgHQPfklELC18/gHgTGArYNfC5w8kZdGn1cU9g3Qf/6BawxyLbWZmZnUioqkV5SLi4Yi4sqT9TlI+s1neatbJfCEiLouI10XEtnl7bbRwB7hmstI5OzK2gst9pCTuHuANkt7Q4AQ/2OrJFDw57+/M+x2AjYAfl/S9Ju93JQ3f1l6vLryvndtKSUsZf8HnUmwzMzNrjyeTJuX+tdC2TuUL+Rb0YKOBPEmbkVZw2XeiOPWaLcodpDqLhzXRd0rJoqR5wHGke/bn5ObN8/72ko/U2rYotG0O3B0Rf2/Qf09JG0bEqjkWew1JS8raa7q7uyc6bGZzwPDwMIODgyxfvpyenh6GhoZcGscM5k/0Oy4i9pruL5T0ctIE3bMjYmXhUMfnC3XeB7xQ0r9ExLiq/5JeCnyFNO+kkmZnQzda4q8dS/6dBuwOHBcRv8pttcyo7IKvrOtTe13Wt6z/XIptZuuI4eFhBgYGGBkZISIYGRlhYGCA4eHh2T41s/WKpH8EziYlXe+pO7wu5gu7AUtrd4AlbSDp30nL/2024ScbmGxk8QeMXxe6rSR9DDgCWBQRJxUO1ZY42KjkY/Pr+tReN7og9f3nUuw1JvuX1YIFC2bsz8XMqhscHBy3OgvA6Ogog4ODHl209d3KdowelpH0VOC7pFxm34i4q65Lx+cLda4Cnk9ayeUcSfsCzyTNIK8N6lUunTNhsjhTf5gAkk4APgR8iTTFveiOvC8bgq21FYdu7wCeKWmjkuHfLUjDwqvmYGwzW0csX768UruZTS9JfcD3STOKXxwRN5Z0W9fyhb2AdwMfIyWZBzOWJN4JvLWViS5NF+VuJ0nHA8eT7qUfGnned8GNpKHZPUo+vnveX19ou470s+1W9z3zSUvgFPvOpdhmto7o6emp1G5m00dSLylR3AR4SUT8tEHXdSpfiORk4F11hx4CXt3qjOjKyaKkAyVdKOmmvF0k6cBWvjzHOw44gfQ8wSFRKFBZk6eOXwLsJWnHwmcXAocCv2H8DKFzSUPOR9eFOox0z3/NQ0NzLLaZrSOGhobWmojW3d3N0NDQLJ2R2fohJ4pLgMcBL42In0zQfZ3KFyRtKOlTpJVcatVsIN1JvkLSWyeLURp37UG8hiewEXAB8LIGXb5NylobPcxZFvNw4HPAcuDDpCnmRXdGxBW575akC/UQcCpwP+mCbw/sFxGX18U+nfT844Wkhzq3IVVRvxrYO8ZXTZ8zsZvlFVzM5j7PhjZbW4sruBwM9Oa3R5KWGj45vx+JiLNzv0cDPyMtQ3w65QnWFbnuYi32OpMvSLoZeAYpSVwN/DupOPgrcpcA/iciXjVZrHEqVAP/RP7i4iouxe0R4BNVKoIDX84n3mhbUtd/G+CbpBpJo8APScvllMWeR5r19CvS0O7twCnAwgb950TsZjev4GJmZp2I1lZwWdJMrgD0TZJXBLBXXex1Jl8o5GS3Ay8qtB9FWgZxNfBI1etfZWTxNsYesvyf/AMAPJeUsQq4PSKe0lRAmxKPLJqZWSdqZWTRmiNpNSlHOyQi/lJ3bEfgq8DWETGvStxmi3IDbErKyE+JiPfWncCngH8D/qHKl5uZmZnZtDk6Ij5bdiAifiZpF9ZefnBSVSa4/Cbvv1Ny7Lt5/6uSY2ZmZmbWZo0SxcLx0YgYqBq3SrL4WdKt5heWHKu1nVxyzMzMzMxmiKS9JA1LWirpt5I2lvSmvC2sGq/KbeiHgF8A75P0NMY/s/ha4AagS9Kbih+KiK9UPSkzMzMzq07SicCxtbek8osP5vYtSBOSK607WmWCy2rGavbUf6isjXyCVRJSa5InuJiZWSfyBJf2kfRK0mzqooiIeZI+Qyo7dF5E/EuVuK2u4KK6rayteMzMzMzM2uuovL8H+O+6Y0vzfoeqQauM+v2A8tFDM7P1kotum9kcszMpV/sA8EuguGLLbXn/pKpBm04WI2KvqsHNzNZVw8PDDAwMMDo6CsDIyAgDA2mSoRNGM5sltdv7vy85Nr9u37RWb0Obma3XBgcH1ySKNaOjowwODs7SGZmZUVvGsKxyTW3Jvz9VDdowWZT0mKrBqn5W0rGSzpd0q6SQtGyS/ntIuljSHyQ9KOl3ks7Is7Pr+3ZJOkbSLZJWSrpN0smSSh+qlbS1pIsk3StphaSrJO3doG/bYptZZ1i+fHmldjOzGfBD0nyRY4Hjao2SFgMDpFvUV1UNOtHI4oikEyVtMUGfcSQ9WdIngJEmP/JxYG/gd8C9k8R+GekiPAP4HGlGz8XAG4HrS87zVNL6i7/Ifc8nPfh5iaRxP7ekpwM/AvYAPgW8F1gIXC5pn5LTaWdsM+sAPT09ldrNzGbAqaT1n7uAfRiba3Jg3q8GPlM1aMPSOYVSOUFK0r4F/B9pJZe/kDLXxwNbA7sB+5FqLgqgmXUHJT0tIm7Nr28iLazd16Dv5cCLgM0j4u5C+6HAGcAxEXFabtsWuBG4MCIOKPQ9klRcvD8izim0nwccAOwcEUtz20LgZmAl8Iy8+HlbY1fh0jlms6v+mUWA7u5uFi1a5GcWzSbg0jntJemdpHykfkBwNXBURHy+asyJRhbPKfR5PvAJ4PvAH4AHgdH8+rvAScDzCvEWN/PltUSxSY8hJVf1I5B35H0xczqQlLSeVtf3DNJ5H1RryLeO9weW1JK5fG4PAGcCWwG7zlBsM+sQ/f39LFq0iN7eXiTR29vrRNHMZl1OBncgrap3Wd5OAXZqJVGECWZDR8RBkk4j3fN+OZNPhnkEuBT4SETc0MrJTOJyYHfgLEn/DtwNbEe6GL8Evlbouyspg762GCAiVkpayvgEbQdgI+DHJd95TSHetYXX7YptZh2kv7/fyaGZzTkR8QvSY2/TYsLSORFxPbC/pKcAryfNrtkeeELuchfpluwSUkXwP0zXiZU4CdiMVDOo+H/nS4EDI+JvhbbNgbsj4u8lcW4H9pS0YUSsyn1r7WV9IS2PMxOx15C0pKy9pru7e6LDZmZmZtOiqTqLEXEbaQTv5PaezoQeISVY3wEuJFUnfy5pgsnXJL0qIh7KfbuBsmQO0q3sWp9VeU+D/sW+FF63K7aZmZlZUyQ90sLHKi/F3EnrNn8Z2BPYLiJqT5RfKOm3wBeAN5OeA4T07OBmDeLML/Qp7jdqom+7Y68xWRH0BQsWeDUdMzOz9ZtIE5HburxyRxTlltRDuvX8rUKiWHN+3hcLUN4BbCqpLEnbgnQbeVWhb629rC+Mv43czthmZmZmVbQ1UYTOGVmsJVZl5Xg2qNsDXAe8lFTSZ03xSUnzgZ1I61zX3Ei6TbxHSezd8/76GYptZmZm1qynzsSXdMTIIvAr0jOLr5b02Lpjb8n76wpt55KGZY+u63sY6RnB4VpDLmNzCbCXpB1r7bkW4qGkupLF2crtjG1mZmbWlIgYaWWr+j0Ni3LPBEkHA7357ZHAhoxNohmJiLMLfT8NvAdYRqppWJvg0g/cCjw7Iu4v9D8dOII0GeZSYBvSKitXA3tHxOpC3y1JSdtDpOrn95OSv+2B/SLi8rrzblvsZrkot5mZdSIX5e48s50sLqF8sWuAK4uTPCSJNBp3KLAtadLI7aSVZU6IiLvqYs8jjf4NAH2kuoznAsflEb/6c9mGVHj8haSk9YYc9zslfdsWu1lOFs3MrBM5WWwvSa8H3kVa+OPxJV0qz4ae1WTRWudk0czMOpGTxfaRdDRjd2gbTXyJZpZkLuqUCS5mZmZmNrGjaMPs6IbJoqTvTTH2kRFx8xRjmJnNmuHhYQYHB1m+fDk9PT0MDQ15eT8zm8ueRJqE+01giPSY3JRNNLK4V/7CqmoFIjdp5YTMzOaC4eFhBgYGGB1NpV1HRkYYGBgAcMJoNsMkHQs8G9iZVC5mJCL6Jui/NfBJxs8VOD4i1hoIk9RFesbv7aR5CHcB55HmIaz1vNdcid3Ab4FnAosi4idNfmZSDZ9ZlLSa1quCB/D8iPjRFM7NJuBnFs3aq6+vj5GRtStM9Pb2smzZspk/IbN1RCvPLEoKUhWUG0gJ4/2NkkVJTydVIXkYOA24j1SFZDtg3/rJpZI+Q7p9eyFwGanCyZGkWsr71FU4mTOxG/zs/cDZwFeBg4vxp6KZZPFdpOLSTcUDvoeTxbZzsmjWXl1dXZT9/1ESq1dPy/9/zdZLLSaLT4uIW/Prm4CFEySL5wEHADtHxNLcthC4GVgJPCPyf9yStiXlOBdGxAGFGEcCnwX6I+KcuRZ7kmt1IvBBUsWY64C/1nWJiHjbZHGKmpngckOVpC9VuDEz62w9PT2lI4s9PT2zcDZm67daojgZSQuA/YEltYQrf/4BSWcCHwV2ZWxBjANJA12n1YU6g1Ty7iDgnDkYu9HPvyPwTtKg3RbA5g26VkoWJ1rB5eK8/aVKwCl8zsxszhgaGqK7u3tcW3d3N0NDQ7N0RmbWhB1IdZh/XHLsmrzftdC2K7CauiQsIlYCS+v6zqXYjZwKPLbwXiVbZQ1HFiPi1a0EbPVzZmZzSW0Si2dDm027+XlRjlLFBTlaUBtJu73kWK1ti7r+d0fE3xv031PShhGxao7FbmQ30qjincAFpIG7KT8303SdRUn7RsRlk/Q5NiJOmupJmZnNBf39/U4OzTpL7XZAWYK2sq5P7XVZ3/r+q+ZY7Eb+CmwMvCMiLm6if1OqFOX+lqRTgA9ExMPFA5L+HzBMKrfjZNHMzMwaWTnF0cOJjOb9RiXH5tf1qb3erEGs+v5zKXYjXwE+APQ20bdpEz2zWOYY4Ed5ejcAkvYDfg68qOqXSzpW0vmSbpUUkpY18Zn9JH1H0r2SRiX9WtLnSvp1STpG0i2SVkq6TdLJ+SHSsrhbS7oox10h6SpJezfo27bYZmZm1rI78r7slm2trXir9w5gU0llSdoWpNvIq+Zg7Ea+D/wa+ISkj0t6paQX1G9NxBmnysjiPaQFqXcBbpD0LuBZwBGFPksrfv/HGaub9NjJOks6HjgBuBw4npRl95AeDK13KmO1jU4m1TY6CniWpLLaRj8i1Tb6FGO1jS7Pt9/raxu1M7aZmZm15kbSrdw9So7tnvfXF9quA15KetbvqlqjpPnATsAP5mjsRi5nrEb2+xv0Caou9xwRTW2kodSLSQ9KrgYeydtqUiL0SeBRzcbLMZ9WeH0TsGyCvvvkH/DDTcTdNp/XN+raj8wx3ljXfl7+WXYqtC0ERoBfketRtjt2la27uzvMzMw6DbAiWvi9F2O/QyfLF87Pv3d3LLTVfu/+uu53+vaT/E4/aC7GnuBnr8/PyrZHql7zhkW5G5H0HuDfGctcHwL2iymOkDVRZPN7pERti4h4OBeqHI2S6uS5IOUg8IKIqM/m/wJcGREvz20LctvVEfHiujgfJtU2ek5EXNvu2FW4KLeZmXWiFotyH8zYc3hHkpbCOzm/H4mIswt9tySVq3mIdCfwftIdve1J+crldbFPJ90lvRC4lLG7hVcDe8f4u4VzJnaD67SMJpZqjoinTtanqNIwpKSXA+9mLFGsDWV+UtLBEfGLKvEqfO8C4AWkC/02SceRppk/KOli4F0RcWfhIw1rG0laSmu1ja4tvG5XbDMzM1vb20jrJRd9LO+vJC1xB0BE/FbSc0mFrz/A2BrLL2swsHU0sAwYAPYD7gZOJ63fPG5Aao7FXkujAbepqlI650zgkNpb0nN4T8nbTsD1kgYj4tTpPklgS2Ae6b79S0kX8mfA80nLEe4gaZeIqM0U6vi6SRPVoALWKhZsZma2roqKs6cj4pfAq5rs+whplPLkyfrOpdgzqcps6LeSksTVwEdII307koZWRZra/enpPsHs0Xn/BOCIiDghIi6MiHeT/mWxDfDmQv9maxsV99NdN6mV2GZmZmZTIukASZdI+k3eLpH0mlbjVZsNA8uBgwvP6v0VOEDSO0hZ8/xGH5yiB/N+NYWh5uws0szovYAv5LaOr5s02b+iFixYUO1hUzMzM1vnSfoC6bZ30dOAl0taFBH/WjVmlZHFC4FnFSd11ETEF0nP3t1U9QSa9Ie8v7fk9u8f8/5xhbZ1rW6SmZmZ2YQkHQC8vfa2ZBtoZYSx6WQxIg6IiHsnOP4LUi2haZcnrywHHi+p/rbtk/P+z4W260g/27jzKdQ2KtYqaqVuUrtim5mZmbWqOKL4ddIEm6NJZXlqE2reTkVVV3BB0iaSDpN0mqQzJc2T1COph7S+YbucTcqK63/I2nDqpYW2c0kztY+u63sY6RnB4VpDRDwAXALsJWnHWnsuzXMo8BvGz1ZuZ2wzm0HDw8P09fXR1dVFX18fw8PDk3/IzGzuejYpR/lkRLw+Ij6btzeQFgZR7lNJpTqLeWm/s4FNGCudszFwF7CAJusAFeJVqZv0GOD/gK2ARaTZ0M8D+oHvAS/Ns45q/deZukllXGfRbGqGh4cZGBhgdHTsseHu7m4WLVpEf3//LJ6Z2bqtlTqL1hxJq0jVY15ekrv8E3AZ8FBElD1K1zhus8mipO1JSc+GpEQRICJinqTFwBuBL0bEO5v+8lQepr5uUs2V9ZM8JG1Kmv38KmBT0rOMXwU+FhEr6/rOI43+DQB9pNpG55JqGz1Qci7bkEryvJCx2kYnlNU2amfsZjlZNJuavr4+RkZG1mrv7e1l2bJlM39CZusJJ4vtI+lOUn50SkS8t+7YvwPvAe6KiCdWilshWTwH+BfSaOJS0rrQtWTxHcDngZ9FxLOqnIC1xsmi2dR0dXVR9v8/SaxevdbCUGY2TZwsto+kbwH7knK1S4Af5kPPBV5JGuz734jYr0rcKqVz9spffiLwbQqLYgO35f3mmJl1gJ6entKRxZ6enlk4GzOzafGfpGQRUnL4ysKx2uOD/1k1aJUJLv+Q91eWHKtNbHls1RMwM5sNQ0NDa62E1N3dzdDQ0CydkZnZ1ETExcDnKC+bA/C53KeSKsni/Xn/jyXHaushNyytY2Y2l/T397No0SJ6e3uRRG9vrye3mFnHi4ijgFeTJuH+Erglv35VRLyrlZhVnlm8HHgJaebzl4D3kYYz3w6cQpoNXfk+uLXGzyyamVkn8jOLnadKsvgG0szjsg/U7oO/PiK+MX2nZ404WTQzs07kZLF9ctWYzUkTkG+sO7Y9KV/7Y0TcVSVulRVcziUli8V73xRef9WJopmZmdmsOQX4KfDvJcc+kY99umrQqiu4HAQcDvwEWJm3G3LbwVW/3MzMzMymzXPz/qslx84lDfA9t+TYhKqUziHSPesv5M3MzMzM5o4n5f3tJcfuqOvTtMprQ5uZmZnZnFRb9nibkmO1tsqrDjRMFiV9r4Xtu1W+XNKxks6XdKukkLSswmffmT8T+YHO+uNdko6RdIuklZJuk3SypNKHaiVtLekiSfdKWiHpKkl7N+jbtthmZmZmLbqVdKv5g5J2qDXmyS3HkiYj31o16ES3ofeifOZzI7UZ0VV8HLiH9NzjY5v+Imlz4CTgAWBhg26nAkeRagudTMqojwKeJWmfiFiTWUt6OvAj4GHgU8B9wGHA5ZL2LVnDuZ2xzczMzFrxv8D2wGbATyT9npSbPQ2Yl1//b9WgDUvnSGplcdSIiHlNf7n0tIi4Nb++CVgYEX1NfO5CoA+4iTTp5gkRcXfh+LbAjcCFEXFAof1I4LNAf0ScU2g/DzgA2Dkilua2hcDNpEk8z8jPa7Y1dhUunWNmZp3IpXPaR9ITSfnF4xg/iFerXHMPsF1E/KlK3IlGFg+pepJV1RLFKiT9M7A/sAfwzgbdDiRdmNPq2s8gTR0/CDgnx1uQ4y2pJXP53B6QdCbwUdIKNdfOQGwzMzOzlkTEnZJeBpwP9DK+1OEIqR52pUQRJkgWI+KsymfZZpIeQ1rz8D8j4lpJjZLFXUkPcI5LwiJipaSljC1PCLADsBHw45I41xTiXVt43a7YZmZmZi2LiOslbQ3sAzyTlDDeDHwnIla1ErNS6ZwaSTsytkb0b4ujZm32SdKknGMn6bc5cHdE/L3k2O3AnpI2zBdt80J7WV+ALWYo9hqSlpS113R3d0902MzMzNZTOQe5NG9TVilZlPR8YBGwVV37r4F3RMSV03FSDb57T9I61P0Rcd8k3buBsmQO0nOCtT6r8p4G/Yt9ZyK2mZmZWVMkPSYi7m/3Z5tOFnOydgXwKMbfAwfYmjS798URcXXTZ9r8d29IeibwOxFRVpW83ihpJlCZ+YU+xf1GTfRtd+w1ImKvBt8BpAkuEx03MzOzdd6IpP8AvhARZXcx1yLpycARpAG4xzXzmSpFuU8CNmQsUXwwbzUbAkMV4lVxOPAM4BRJW9Y24NH5+FMlPa3Q/w5gU0llSdoWpNvIqwp9a+1lfWH8beR2xjazaTQ8PExfXx9dXV309fUxPDw826dkZi2QtFDSByXdKOlvku6W9CNJb5Gkur5zom5y1dgt2oT0aN6IpCWS3ivpBZKeJGlDSRvl13tJep+kK4FlwHuBxzT7JVVuQ+9CmoL9a9Kt4BsAJD0bWExK5nZt/PEp6SUltpc1OH4tsIKxmovXAS8FdgOuqnWSNB/YCfhB4bM3km4T71ESd/e8v77Q1s7YZjZNhoeHGRgYYHQ0Dd6PjIwwMDAAQH9//2yemplVIKn2+39P4CzgdNIjXAcCXyLVOn5/7juX6iY3HXsKzsnXoQt4ft4mUyups7jpb4mIpjbgbtIyMq8tOfZa0gzhu5qNVxLjJmBZg2M75u+o376ff+BDgFcX+m+fz+cbdXGOzP0Pqms/P/9sOxbaFpKmmf+aXI+y3bGrbN3d3WFmjfX29kb+b3Lc1tvbO9unZrZeA1ZEtfxgj/zf76l17RuSViP5a6HtvPw7d6dCW+137q/qfp9vO8nv8zfWtbct9lQ20mDexaQkdvUk20PAN4FnV/mOKiOL3wbeQPkqLbW2SrNuJB1MGjUEeAKwoaQP5fcjEXE2QET8DPhZyedfkV9eEoWi3BFxY76Hf4SkC/J51TL6K8l1EAuOBV4MfFvSqcD9pH8tbAHsl/9ytz22mU2f5cuXV2o3szmrdrv0jmJjRKySdDd5XsAcq5vcdOypiojrgf0lPQV4PfBC0sDWE3KXu0h3OpcA50XEH6p+R5Vk8f3AC4CPSLo5Im6BdP8eOIF0D/z9Fb//baQfquhjeX8lcHbFeEVH53MaAPYjjYyeDhwXdUO/EfFbSc8l/QF+gPSvlRuAl0X5cnztjG1m06Cnp4eRkZHSdjPrKNcCfwXeJ2kZ8H/AxsBbgJ2Bd+R+c6lucpXY0yIibiPd7j55umNXSRavJP3hbA7cLOne3F6bSXMP8KO650wjIp7eKGBMMuN3MhHxFtJflrJjj1DhokXEL4FXNdm3bbHNbHoMDQ2Ne2YRUn3SoaF2zcMzsybNn6iWcH1uEBH3StofOJN0K7jmb8ABEXFRfj+X6iZXiT3nVUkW+xh77kfA4wvHIr8vthXXJDQzm1G1SSyDg4MsX76cnp4ehoaGPLnFrDM9QJrbcDFpksnjSZVSzpH0qoi4grlVN7lK7Dmv6gou9fUVJ2s3M5s1/f39Tg7N5p6VVe4sStqelCAeExFfLLR/lZRAnpFnKs+luslVYs95VZLFF7XtLMzMzMzKHUNKsM4vNkbEqKRvkQpM99Fa3eRnStqo5HbxdNRkbjb2nNd0shhtXMrPzMzMrIFaMjav5NgGhf1cqptcJfacV2UFFzMzM7OZ9ou8f0uxUdJjSZNH7wV+FxEPAJcAe0nasdBvIXAo8BvGz04+lzS34ui67zuM9DzhmiWf2hm7E6hKmT9JzyHVE9yK9HBp/bOKE85+tumzYMGCWLFixWyfhpmZWSWSRiOi6SXvJPWSSs49jpRkXU3KQQ4j3X4+PCI+n/tuSUraHiKtoFKrbbw9qbbx5XWxTyfdxr6Q8XWTrwb2jvEruLQt9lzXdLIo6Y1MXPdQpGSxbJjYppmTRTMz60RVk8X8macDx5EWuXgi8CCwFDgtIi6o67sNqbbxCxmrbXxCWW1jSfNIo38DpMTzbtKo4HF5NLG+f9tiz2VVksVfkNZ/noiTxRniZNHMzDpRK8milZP0vSmGODIibp6sU5XZ0E8j3X//MWn49e6Ju5uZmZlZG+1FazWta7WwN2mmc5Vk8TZSwvix+vvyZmZmZjZr2lrvusps6M+RTmbf6fpyScdKOl/SrZIir/lY1k+SDpL0NUm/lTQqabmki/Okm7LPdEk6RtItklZKuk3SyXkx8LL+W0u6SNK9klZIukrS3jMd28zMzKyio0j1sJvZKucfVWdDfx54O2k20I9JC3uPExEfrRAvSGtK30BaDPz+iOgr6TefsYdZvwX8HngSafHwzYE3RcTius98hnTxLgQuI81COpJU72ifuhlOT88/08PAacB9pBlO2wH71j+42s7YzfIzi2Zm1on8zOL0kbSadDv5+RHxo3Z9rsoEl17ge8BTmeD+eJUJLpKeFhG35tc3AQsbJIsbAM+tLwwu6YnAzcAjwJNqSZqkbUkFNC+MiAMK/Y8EPgv0R8Q5hfbzgAOAnSNiaW5bmGOvBJ4R+UK1M3YVThbNzKwTOVmcPpIuIuVkH4iIX7Xrc1VuQ5/OWKKoBlsltUSxiX4Pl60gExF3AleS1l8srsF4YD6f0+o+cgZpLcaDag351vH+wJJaMpdjPwCcSaopuesMxTYzMzNrSkS8OiL+uUqi2Mrnqkxw2YuUKI6SErS/AHOhoOSTgVWMvyW+K+ncitXUiYiVkpYyPkHbgbQw+I9LYl9TiHdt4XW7Yq8haUnJZ9bo7u6e6LCZmZmtZyTtGxGXTdLn2Ig4qUrcKiOLK/P+sIh4RUS8OSIOqd+qfPlUSXo5ad3FcyNiZeHQ5qRFuusX74a00PemkjYs9K21l/WF8QuHtzO2mVUwPDxMX18fXV1d9PX1MTzcUStomZlNt29J+nR+fG8cSf9P0neBE6sGrTKy+A1SFfKNqn5JO0j6R9KKMrcD76k73E1a8LvMykKfVXlPg/7FvjMRe42I2KvBdwDpmcWJjput64aHhxkYGGB0dBSAkZERBgYGAOjv75/NUzMzm03HAC+QdGBE/A5A0n7Al4BNaaEuY5WRxc+TFso+WdKApO0l9dRvVU+gFZKeCnyX9APvGxF31XUZpXFSO7/Qp7gv61/ft92xzaxJg4ODaxLFmtHRUQYHB2fpjMzMZt09pHkVuwA3SHpLruByMfAPuc/SqkGrjCz+jLHJLV9o0CcqxqxMUh/wfWAh8OKIuLGk2x3AMyVtVHK7eAvSbeRVhb619nq1tuJt5HbGNrMmLV++vFK7mdl64JmkCbSvAB4N/FduF2m+xaeBD1UNWmVksaY2fFk/C7qlGdFV5PI93yctT/OSiPhpg67XkX623eo+Px/YCbi+0Hwj6TbxHiVxds/7Yv92xjazJvX0lN/IaNRuZraui4g/R8T+wHsLzQIeAl4WEe+PiIeqxq2aLDYqk9PWJBHWJIpLgMcBL42In0zQ/VxSUnt0XfthpGcE1zwFn8vYXALsJWnHwvctBA4l3XovzlZuZ2wza9LQ0NBaVQG6u7sZGhqapTMyM5t9efLvuxm7G1y76/tJSc9sKWYL9aCnjaSDgd789khgQ+Dk/H4kIs7O/R5Nug3+VFK9x7IE64pcd7EW+3TgCNIqK5eSVlk5Crga2LtulZUtc8yHgFOB+0nJ3/bAfvVrYbczdrNclNssTXIZHBxk+fLl9PT0MDQ05MktZnOci3K3j6QzgVplGgE/Ap6StyDd7RyMiFMrxZ3lZHEJ8MIGh6+szQjOzyn+fpJwL4qIJYXY80ijfwNAH3A3aVTwuDziV38u2wCfyOezIWkJwhPKluNrZ+xmOVk0M7NO5GSxffIyfpBWtjsR+BjwGNKzi/+cj0WV1faghWRR0i7Am4Fn5KZbgLMiws/ezSAni2Zm1omcLLZPThaXAwdHxFV1x95Buns7v63JoqQPkrLUMoMR8YkqX26tc7JoZmadyMli+0j6BnBoRNzb4Pgzga9GxI5lxxvGbTZZlLQ38B3GHpisF6RSNkuqnIC1xsmimZl1IieLs6tB6b8JVamJeFTte0jlXn6Y3+/JWBmZd5FmLJuZmZnZLJC0CfB6YFtSXeq3M1bf+bbK8SqMLP4R2Aw4MyLeXnfsP0kzfO+MiCdVPQmrziOLZmbWiTyy2F55ab+zSTWpa6VzNgbuAhbQQiWWKnUWa8vEXFByrNb2+CpfbmZmZmbTQ9L2wNcZSxQByCvLXULK+15VNW6VZPFveb9zybFa21plY8zMzMxsRhwLbJRf169yV3t8sGxVuQlVXRt6L+A4SU8gFaAGeC7wDtIw58+qnoCZmZmZTYu9SPnYicC3gWL5nNqziptXDVolWTwrn8SjSJNdjiocq90TP6vqCZiZmZnZtKg9MnhlybFVef/YqkGbvg0dEWcB32Tt9aFr+4tyHzMzMzObeffn/T+WHNs170trME6kyjOLAAeQlrn7KfAgsDK/fhfwuqpfLulYSedLulVSSFo2Sf+tJV0k6V5JKyRdles/lvXtknSMpFskrZR0m6STJZXOwJorsc3MzGxtkh4v6dOSfpt/994l6fuSnl/Xb078Pq8ae5rcQBrE+yjwysK5HAp8gHQX+CdVg8722tAB3EP64XYG7o+IvgZ9nw5cCzwMnAbcRyrXsx2wb/06y5I+Q7pVfiFwGbANcCTp/v0+EbF6LsZulkvnmJlZJ2qldI6kXlId54WkdY5/TZrxuwNweUR8LfebM7/Pq8SeLpLeAHyVlBSudTi3vz4ivlEpcERMuJEWoH4MsEGD4xvU+kwWq+SzTyu8vglYNkHf80gLY+9UaFsIjAC/Iie+uX1bYDXwjboYR+YL9ca5GLvK1t3dHWZmZp0GWBHV84WrSBM0njRJvznx+7xq7OncgOH83avz+T5SeL+4lZgT3oaW9ArSve07gb4G3fqAPwP35P5Ni4hbm+mXh2z3B5ZExNLC5x8AzgS2YuxePMCBpAz6tLpQZwCjwEFzNLaZFQwPD9PX10dXVxd9fX0MDw/P9imZ2QyT9ALgecCnIuKPkh4lqbuk31z6fd507DY4CDicdLt5Zd5uyG0HtxJwsmcW30D6YS+MiN+WdcjtX8+x3tDKSTRhB1LdoB+XHLsm74t/SLuSMuhrix0jYiWwtK7vXIptZtnw8DADAwOMjIwQEYyMjDAwMOCE0Wz98/K8Xy7pEtKciRWSfi2pmHTNpd/nVWJPqzyA+4WI2DUiFuRtl9zW0rOHk5XO2Zk0XHrZJP0uA95IecHu6VCrCXR7ybFa2xaFts2Bu6N8oezbgT0lbRipovlcir2GpCVl7TXd3Wv9o8psnTI4OMjo6Oi4ttHRUQYHB+nv75+lszKzaTB/ot9xEbFXXdPWeX8G8BvgzaTE7d3A2ZIeFRFfYm79Pq8Se86bLFlsdtHpCROfaVDLjMou+sq6PrXXZX3r+6+aY7HNLFu+fHmldjNbZz067/8GvKiWYEm6ELgV+Liks5hbv8+rxG6ZpO+18LGIiBdX+cBkyWLt+CaT9HtMk/FaVRte2Kjk2Py6PrXXmzWIVd9/LsVeo+RfVuMsWLBg9qaxm82Anp4eRkZGStvNrKOtnOx3XJ0H8/6rxZG4iLhX0sXAm0ijj3Pp93mV2FOxF+UznxupzYiuZLJnFv+c9/tN0q82seXPE/Zq3R15XzZyWWsrDg3fAWwqqewPdQvS0PCqQt+5EtvMsqGhobUet+ju7mZoaGiWzsjMZskf8v5PJcf+mPePY279Pq8Se6pUYWvJZCOB1wK9wCGSroiI89c6Q+kA4BBSpnpt/fFpciNpOLds8evd8/76Qtt1wEuB3SisiyhpPrAT8IM5GtvMstpziYODgyxfvpyenh6Ghob8vKLZ+uda4B3Ak0uO1dr+TEom58rv8yqxp+KQaYozsUlq9byK8XV6rgDeC7w17y9nrH7PI8D+U6gLNFmdxfPzd+xYUt/o14yvb7Q9E9c3Omguxq6yuc6imZl1IirWWSSNGt5PGmFcWGh/EvAA8Oto4XfuXMoV5vo24QoukkSqmF5bSmeiiuA/iIgXNQxWHv9g0shl7QJuCJyc349ExNmFvluS/nXxEHAq6S/OYfkPZL+IuLwu9unAEaTK6ZeSKqcfBVwN7B3jq7LPmdjN8gouZmbWiVpcwWUA+E/gZuC/SfnCv5ISxldExLdzvznz+7xK7HaQtCNja0T/Ngr1IStrIqPfjFQTqDjCWF8R/KfAZlUzVVIiGg22JSX9twG+CfyV9GDoD0lL5pTFnge8h1RV/e+kZwlOofCvkrkYu9nNI4tmZtaJaGEFl/QxXkOqabiCNDP628BzS/rNid/nVWNP10Ya4PtlSc72S+CFrcRsam1oSRsDRzM246jmV8CXgc9EKjRpM8Qji2Zm1olaGVm05kjaE/ge8CjKJ7SsAl4cEVdXittMslh3It3AY4G/RsR0TPu2FjhZNDOzTuRksX0kXcnYo4MwVnZo40LbD6Ja6aJJS+esJSJGI+IOJ4pmZmZmc8oupEf5fgXsEnm5v9x+S+5TeanBysmimZmZmc1JtZHED0fEDbXG/Pq4/LbyYJ+TRTMzM7N1w7fzvuwZw1rbpVWDVn5m0eYGP7NoZmadyM8sto+kpwA/Js3Wfm1E3JLbtwa+DiwA9oyIstVwGsd1stiZnCyamVkncrLYPpJuBTYhFTIP4N586HF5fw+p7FBRRMTTJ4o72XJ/ZmZmZtYZ+hirVy3g8YVjkd8X22oLq0xoWp9ZlLTddMYzMzMzs0pEeY1FlWxNmZaRxbykzPHAK0mFIM3MzMxsZlVadrlZk44sStpO0hclXSppkaRnFY49Q9JFwA3Aq5uJNxWSFkr6oKQbJf1N0t2SfiTpLXkd62LfrSVdJOleSSskXSVp7wZxuyQdI+kWSSsl3SbpZEmlz1S0M7bZ+mR4eJi+vj66urro6+tjeHh4tk/JzKxjRcSVrWyTxZ1wgoukZ5LWYSwmNquAFwNPBs4iLeZdS9QiIua1+kNOeKJSF3AlsGf+3muAbuBAYDfgUxHx/tz36aTFvh8GTgPuIy32vR2wb0R8py72Z0iLe18IXEZa+/FI4CrSmo/FhcTbFrsKT3CxTjc8PMzAwACjo2Mlv7q7u1m0aBH9/f2zeGZm1k6e4NJ5JksWvwS8mbEHJcmvrweeyfgkcjnwyYj4QltOVNoD+BFwWkQcU2jfkFSV/PER8djcdh5wALBzRCzNbQuBm4GVwDPyYuZI2ha4EbgwIg4oxD0S+CzQHxHnFNrbFrsKJ4vW6fr6+hgZGVmrvbe3l2XLls38CZnZjHCy2F6SnkMapNqKNJml/tnESWc/15vstvHzSMnhauBbeXuEtGxM7Q/698ChwJbtShSzx+T9HcXGiFgF3A2sAMi3d/cHltSSudzvAeBM0sUrLnVzIOlCnlb3fWeQqpwfVGtoZ2yz9c3y5csrtZuZ2cQkvZE0sPYvwLNJs6N7C1tf3iqZLFncIu8/EBGvjIhXAscyNtX6LGCbiPjviHi46pdXdC2pyOT7JL1OUk9+dvAkYGfghNxvB2AjUlHKetfkfTGh25WUDF9b7BgRK4GldX3bGdtsvdLT01Op3czMJvUhymc9V5r9XG+y2dDzGbvtXFN8/W95ZK/tIuJeSfuTRvDOKxz6G3BARFyU32+e97eXhKm1bVFo2xy4OyL+3qD/npI2zD9nO2OPI2lJyWfW6O7unuiw2Zw3NDRU+szi0NDQLJ6VmVlHexopb/sxcCrpzuuUNVs6p5jMrBlBjIi/TMdJVPAAcBNwMWmY9fHA4cA5kl4VEVeQJr0AlCVoK/O+mGl1N+hb339Vm2ObrVdqk1gGBwdZvnw5PT09DA0NeXKLmVnrbiMljB+LiMunK2izyeIP6yrTAEjSI3VtERFtWRVG0vakBPGYiPhiof2rpATyjDxTuTZMsVFJmPl5P1poGwU2a/C19f3bGXuciNirweeANMFlouNmnaC/v9/JoZnZ9PkcaURxX2DGk8W1ZtI0aG+nY0gJ1vnjTiRiVNK3gCNID23WJsBswdpqbcXbyHcAz5S0Ucnt4i1It5FXFfq2K7aZmZlZyyLiM5K2Bo7Ms6J/TJrvUd/vo1XiNpMsNloyZqbVkrGyOo4bFPY3km797lHSb/e8Lz53eR3wUlKtxqtqjZLmAzsBPyj0bWdsMzMzs5ZJ6gX+iZSn7Za3MtOaLB5SJVib/YKUeL0F+FStUdJjgVcB9wK/i4iHJV0CvEbSjhHxs9xvIanEz28YPzv5XOCDwNEUEjpSoe1uYM2SEhHxQLtim5mZmU3R6cBTGV8fu17lx9gmLMo9l+Rs+QbgcaQk62rSBJfDSLefD4+Iz+e+W5KStodI9+7vz/22B/arf+hT0umk29gXApeSVlk5Kn/H3nUruLQtdhUuym1mZp3IRbnbR9L9pDrYo6RV7/5CKuE3TkRUGgycbAWXW0kZ6Osi4oYqgdshT2A5jrTc4BOBB0n1Ck+LiAvq+m4DfAJ4IWlJwhuAE+qX48t955FG/wZIiefdpFHB43LB7fr+bYvdLCeLZmbWiZwsto+kPwP/QFoh7mvTFneSZHE1KVl8fkT8aLq+1KbOyaKZmXUiJ4vtI+kLpMGpt0bEWdMVty1lbszMzMxsxn0eeBFwsqTainP31XeKiErrqjpZNDMzM1s3/IyxyS1faNAnqJj/Ndv5rZL2aaZj1do9ZmZmZlVI6gZuJs0F+I+IOKLu+NbAJxk/t+D4iPheSawu4F3A23O8u0jLCh8XEWs979XO2NOorB72RDOkJ9Rsslhl1oyTRTMzM2unjwKblh3Ik2F/RFqe+FOk27CHAZdL2rdkMuqppColFwInM1a15FmS9qmriNK22NOoUULYco3srgpf3MxmZrbG8PAwfX19dHV10dfXx/CwS4ua2dRIejapysjxDbqcBDwW+KeIOCmX1Xs+aVW1/1Bh/WJJ2wJHAhdExGsi4oyIeDfwbtKzf/8yg7GnLCK6mtjKFjeZULPJ4p+AkSa2Sg9Mmtm6a3h4mIGBAUZGRogIRkZGGBgYcMJoZi3L5ejOAP4XuKDk+AJgf2BJRCyttedSdWcCWwG7Fj5yIGmw67S6UGeQahUeNBOx57pmb0O/1qVzzKyKwcFBRkdHx7WNjo4yODhIf3//LJ2VmXW4Y4BnAAc0OL4DUJsFXO+avN+VsdXWdiUVrS6uvkZErJS0lPHJXztjTytJuwBvJl0rgFuAsyLi+safasyzoc2sLZYvL7/R0KjdzNYb8yUtaXQwIvYqa5f0VOAjwEcjYpmkvpJum+f97SXHam1b1PW/OyL+3qD/npI2jIhVbY49bSR9EPhYXfPewDslDUbEJ6rGbPY2tJlZJT09PZXazcwm8QXg98ApE/TpzvuyBG1lXZ/a67K+Zf3bGXtaSNobOLH2tmQbkrRX1bgeWTSzthgaGmJgYGDcreju7m6GhoZm8azMbA5Y2Wj0sBFJBwEvBV4QEQ9N0LX2P5yNSo7Nr+tTe71Zg1j1/dsZe7oclfcCrgd+mN/vCeyWX78LWFIl6GQji3vn7aZmguWHP9tK0uMlfVrSbyWtlHSXpO9Len5dv60lXSTpXkkrJF2VM+6ymF2SjpF0S455m6STG/087Yxttq7o7+9n0aJF9Pb2Ione3l4WLVrk5xXNrJK8EskpwKXAnyRtKWlLoDd32SS3PZY0KxnG3w6mrq14G/kOYNP8HWX97y7cJm5n7OnyHFI9xTMiYreIeHfedidNrBGwe9WgkyWLHwJ+FxH3TxYoJ2s/q3oCVUjqBX5Cemjz68A7gY8Dyyj84RXqIO1BqoP0XmAhqQ5SWXHxU0l/EX9BmuZ+Pik7vyQX1CyeQ9tim61r+vv7WbZsGatXr2bZsmVOFM2sFRsDTwD2A35T2Jbk4wfl94cCN5Ju/e5REqeWJBUneVxHyoV2K3aUNB/Yqa5vO2NPl3/I+7VmihfaHl85akQ03EizeO4BDp6gz6NISdNDwCMTxZvqBlwF3AY8aZJ+5wGPADsV2haSyvv8ClChfdv8c36jLsaRpOz8jTMVu8rW3d0dZmZmnQZYEdV+9z8KeG3J9q/5d+ll+f1Wuf/5+ff0joUYtd/Tv677Pb39JL+nD6prb1vs6diAv+Tz+2DJsQ/m8/lL5biTfOnq/KWPkDLSTeuO7wT8PB9f3c5kEXhBvrhHFv7ydJf0W0B6cPS7Jcc+nGPsVmg7Mbc9v67vfGAFcOlMxK66OVk0M7NOVDVZbLSRls8L4HN17VuSBrruBD5Augv5U9KqK/9UEuf0HOcC0ujkyaQBsCVA10zFnqZr8r2cj60k3dmsJdanAg/mfO17VeNOdhv0WsZWZnkVcJOk/ZV8iFRXaNtCn0WTxJuKl+f9ckmXkH7oFZJ+nR98rWm2DhKF16V1kICltFZjqZXYZmZmNkUR8VvguaTfyx8APk0aoHlZRFxe8pGjgX8j5TP/QVpZ5XTgFVG3HF87Y0+Ts/L+UaRH3s7N21GMTcw5q+RzE5psNvSepGHLD+cv3oy0vuFtwFMYSxLvBN4WEZdWPYEKts77M0jPJryZ9IO/Gzhb0qMi4kusIzWWJqpBBWlWqZmZ2foqIpbRYKnhiPglaZCrmTiPkEb8Tm6yf9tiT1VEnCXp1Yw/v2DsOl0UEZWTxQlHFiNidUScSHpw8+bcLKAn72tDq9u1OVEEeHTe/w14UUQMR8R/k9Zk/Cvw8TxhZL2usWRmZmbrtQNII5o/Jd2FXZlfvwt4XSsBm6qzGBE/lfRO4ArSCCOkZPH3wBER8ZdWvryiB/P+q8WRuIi4V9LFwJtIo4/rRI2lmKQG1YIFC2Ki42ZmZrb+ybe3P5u3aTFp6RZJ8yR9BPgu4xPFAJ4K/FxSS5lqRX/I+z+VHPtj3j8O11gyMzOz9Yikx+StdBBQ0ga1Pq3EnzBZlLQN6SHOD5FGIUVKhj4NrMrvNwW+Jumrkh7Xykk0qTZJ5Mklx2ptf8Y1lsxmzPDwMH19fXR1ddHX18fw8PBsn5KZ2XpF0iuAe0nzR/oadOsj5Uj35P6VTDayeAPwbMYejBwGto+I9wG7kO6B17yelEy1y0Wk5xUPkrSw1ijpScCrgd9ExG8j4gHgEmAvSTsW+i0kTVv/DeNnJ59LGiU9uu77DiM9T7jmt187Y5t1muHhYQYGBhgZGSEiGBkZYWBgwAmjmdnMegMpT7swz9ZeS27/Oinve0PVL1Cuy1N+UKpN674beEdEXFB3fAPgeOD9pJHHiIh5VU+iWZIGgP8kTbb5b2BDUlHOJ5GmoX8799uSlLQ9RKotdD8pQdse2K9+eruk04EjSDO9LwW2IU0zvxrYuzi9vZ2xq1iwYEGsWLGilY+aTYu+vj5GRkbWau/t7WXZsmUzf0Jm1hEkjUaEl7ydJpJ+QZqz8ZaIOHuCfv3A2cAtEfHMSt/RRLJ4CTAQEXdO0G9X4Cuk6ultSxbzd70GeB9jldF/DHwkIq6u67cN8AnghaSk8gbghIj4TknMeaTRvwHSUO3dpFHB4/JoYn3/tsVulpNFm21dXV2U/f9DEqtXt6N8mJmtC5wsTi9J95FWkXlxRCyZoN9epKLdf4uITSp9xyTJ4tsi4r+aPNn5wEkRcUyVE7DWOFm02eaRRTNrhZPF6SVpBanCymsi4psT9Nuf9Ejfg1Wv/2R1FtckipK6JO0p6V8lfSDvn5tHzoiIlU4UzdYfQ0NDaxWH7+7uZmhoaJbOyMxsvfTnvN9vkn61iS1/nrBXiabqLEr6Z+AUUjHuesslvaf+eUYzW7f19/cDMDg4yPLly+np6WFoaGhNu5mZzYhrgV7gEElXRMT59R0kHQAcQpp0e2398clMeBs6f8Hbgc/X3uYvovCe3HZ4RHyx6glYa3wb2szMOpFvQ08vSa8iTaKt5WffA74N/AX4B2CfvNVyuH+OiIsrfcckzyw+DfgFqRh36fqLjK05uIq07F/ptG2bXk4WzcysEzlZnF6SBCwhLX8M4wf11nTL7T+IiBdV/Y7J6iweQZrtC2nG7+tIM3o3zvvXAT/Jxx8FvLPqCZiZmZlZayKN+r0O+HmDLrXBvp/TQo1FmHxk8WfAdsBVwD4R8XBJn3mkIc/nAzdGxI71fWz6eWTRzMw6kUcW20PSxqRSfW8i1V2s+RXwZeAzEbGypdiTJIt/BR4NvCEivj5Bv9cC59FC7R5rjZNFMzPrRE4W209SN/BY4K8RMTrVeJPNhp6f93+ZpN89eb/R1E7HzMzMzKYiJ4hTThJrJntmsZYkPneSfnvm/T0T9jKzjjI8PExfXx9dXV309fV53Wczs/XQZMniDaQHI98nqbTYo6SXk5bfi9x/xkjqlvR7SSHpcyXHt5Z0kaR7Ja2QdJWkvRvE6pJ0jKRbJK2UdJukkyWVDpW3M7bZXDA8PMzAwAAjIyNEBCMjIwwMDDhhNDNbz0z2zOJBpDWfa51+DlxPqv69GbAzsCNjU7LfHBGL23nCdef3aeDtpDUR/yMijigcezqp8OTDwGnAfcBhpAk7+9av4yzpM8BRpFpFlwHbAEcyNrln9UzEbpafWbR283J+ZtYOfmax80yWLM4DrgZ2y02NavcAXAfsGRGPTOsZNj63Z5MStvcBJ7N2sngecACwc0QszW0LgZuBlcAz8nRzJG0L3AhcGBEHFGIcCXwW6I+Ic2YidrOcLFq7dXV1Ufb/B0msXl353zdmZoCTxU402drQjwCvBn6am+oLc9feLwVePYOJ4jzgDOB/gbWWGcy3d/cHltSSOYCIeAA4E9gK2LXwkQNJP8tpdaHOID0getBMxDabS3p6ylb3bNxuZmbrpsmeWSQi/gTsDrwD+D5pEssjef/93P6ciPhjG8+z3jHAM0hFw8vsQJqZ/eOSY9fkfTGh2xVYTd16ibke0dK6vu2MbTZnDA0N0d3dPa6tu7uboaGhWTojMzObKknbVf3MZKVzAIiIh4BFeZtVkp4KfAT4aEQsk9RX0m3zvL+95FitbYu6/ndHxN8b9N9T0oYRsarNsdeQtKSk/xr1v8TNplt/fz8Ag4ODLF++nJ6eHoaGhta0m5lZ55C0I3A88ErSqntNaypZnGO+APweOGWCPrVMqixBW1nXp/a6rG99/1Vtjm02p/T39zs5NDOb4/Jo4RFAD/AH4AsR8dN87BnAJ0hJYm1CciUNk0VJ95Jun+4bEdc26jddn2sy9kHAS4EX5NHORmqFKMuKhM+v61N7vVmDWPX92xl7jYjYq8FngDTBZaLjZmZmtu6T9EzgR0Bx0tDBkl4MPBk4C9iQteedNG2iZxY3IS0VU3X0sdXPTUjSRqTRxEuBP0naUtKWQG/te3PbY4E7ctsWa0da01a8jXwHsGn+jrL+dxduE7cztpmZmdWRtJWkj0q6RtJdkv4maamkwbKaxetZneX3kkoIQkoIRUoOTwX+izS4VUsUl9N4vkdDzSR0b5W0T9XAbbAx8ARgv7zVOyhv7wW+SLr1u0dJv93z/vpC23WkEcvdSLUPAZA0H9gJ+EGh741tjG1mZmZreytwOHAxMAw8BLwIOBF4vaTdI+JBWFML+UekWsifYqwW8uWS1qqFTEqqarWQTybVQj4KeJaksjrLbYk9Bc8j3VpeTaoSA/BPwC6MJYm/B4aAr0TEw5W/ISJKt/ylj7Sw1T63Z6PYrWykhzFfW7L9a75Il+X3W+X+5+fz2LEQYyEwAvyaXGMyt2+fz/sbdd95ZI59UF1722I3u3V3d4fZVC1evDh6e3tDUvT29sbixYtn+5TMbB0HrIjqOcAuwCYl7Sfm36VHFNrOy7+jdyq01X5H/6rud/S2k/yOfmNde9tit7qRHmV7BHhPoe09hXzsS8CGU/qOCb589RS2aU8WJzjPvnzRP1fXviWpvM+dwAeAd5LqRT4M/FNJnNNznAuAQ0n/AngIWAJ0zVTsZjcnizZVixcvju7u7sh/NwOI7u5uJ4xm1latJIuNtjwgE8AX8/sFpMmj3y3p++Hcd7dCWy3ZfH5d3/nACuDSQlvbYk/xGtTyrhcW2l5YaP+HqX7HRLehPzLBsWYsn+LnpyQifivpuaQZQB8g3b+/AXhZrD1MDHA0sAwYIN3mvpuU5B0XdcPE7YxtNlMGBwcZHR0/t2p0dJTBwUHPgDazTvHkvL8z75uthXxt4XVpLWRJS2mtznIrsadDcf7DmlvNEfGXqQZumCxGxFSTxRkREctoMMMnIn4JvKrJOI+QRvxObrJ/22KbzYTly8v/Pdeo3cxsmsyfqJZwTFINpCav5nYcKTGqLZvb8XWWp+CH0lrpkCTVr64XEVFpEvKkK7iY2brJy/mZWYc7jTSx9LiI+FVua1ct5HbHng6q22qPGNW3Vy6h04lFuc1sGgwNDTEwMDDuVrSX8zOzGbCy2dHDRiR9jFQCZlFEnFQ41PF1lltUlgC2XFexnpNFs/WUl/Mzs04k6QTgQ6RZvu+oO9xKLeRnStqo5HbxdNRZbjb2VBwyDTEm5GTRbD3m5fzMrJNIOp60vvFXgEPz7OqidtZCnpN1liPirOmIMxE/s2hmZmZznqTjgBOAs4FDyqqJRMQDwCXAXpJ2LHx2Ial03W8YPzv5XNJzfUfXhTqM9Dzh8EzEngpJt0r6naRnT0e8Mk4WzdZhw8PD9PX10dXVRV9fH8PD0/L/JjOzGSXpcFJJv+XAd4A3SjqosL2k0P1Y0soq35b0AUnvJI3sbQEcWRyNjIgbgf8AXiPpAkmHSjqZtLzwlYzNsp6J2K3qy9v8ibu1TmuP4FonWLBgQaxYsWK2T8PmsOHh4dIJLIsWLfKtZzObNZJGI6LS2siSvgy8eYIuVxYnzUjahlQL+YWM1UI+oawWci7BczSpFnIfqRbyuaRZ1g+U9G9b7FZIWs1Y8e8fTUfMtb7DyWJncrJok+nr62NkZGSt9t7eXpYtWzbzJ2RmRmvJojXmZNEacrJok+nq6qLsv29JrF7thYPMbHY4WZxehWTxSzS5el5EfLTSdzhZ7ExOFm0yHlk0s7nIyeL0KiSLTYuIeVX6d8wEF0lbSfqopGsk3SXpb5KWShqUtNZfOklbS7pI0r2SVki6StLeDWJ3STpG0i2SVkq6TdLJZXHbHdtsugwNDdHdPX5xABfdNjNbZ5Wt1DLl1Vugg0YWJX0COBy4mLRg90PAi4DXAz8Hdo+IB3Pfp5Omrz9MWg7oPtJU9e2AfesfQpX0GeAo4ELgMmAb4EjSDKd9itPz2xm7Co8sWjOGh4dddNvM5hSPLE6vwsjinTReXnCciHhqpe/ooGRxF+A3EXFfXfuJwCBpyvrnctt5wAHAzhGxNLctBG4mrcf4jNr0dknbkgptXhgRBxTiHgl8FuiPiHMK7W2LXYWTRQMng2bWeZwsTq+ZmODSMbehI+L6+kQxOzfvtwPIt3f3B5bUkrn8+QeAM4GtgF0Lnz+QNCx7Wl3cM0hrNh5Ua2hnbLOqaqVxRkZGiAhGRkYYGBhwLUUzM5tW68Jyf0/O+zvzfgfSIt8/Lul7Td7vyliV9V2B1Yyvuk5ErJS0lPHJXztjjyNpSaNjwFrPotn6Z3BwcFwNRYDR0VEGBwc9umhmZtOmY0YWy+Ril8eRnh+s3c7dPO9vL/lIra24CPjmpMW8y+7z3w5sKmnDGYhtVsny5eUVEhq1m5mZtaLTRxZPIy3e/cGI+FVuqw25lSVoK+v61F43eiC02H9Vm2OPU6xEX2bBggWd8bCptU1PT09paZyenp5ZOBszM5sle5OeWbypmc6SFkREpUkPHTuyKOljwBHAoog4qXCodl9uo5KPza/rU3td1resfztjm1Xi0jhmZgZ8CPhdRNw/WUdJzwd+VvULOjJZlHQC6eJ8CXhH3eE78n4L1lZrK95GvoN0O7gsqduCdBt5VaFvu2KbrWV4eJi+vj66urro6+sbN3mlv7+fRYsW0dvbiyR6e3u97rOZ2fpnb+Dnkg5u1EHSoyR9CvgeUKlsDnRgsijpeOB44CvAobUyNQU3km797lHy8d3z/vpC23Wk67Bb3ffMB3aq69vO2GbjNDPbub+/n2XLlrF69WqWLVvmRNHMbP20CfBlSRdI2rR4QNJOwE+A9wCVVm6p6ahkUdJxwAnA2cAhZQWtcxmbS4C9JO1Y+OxC4FDgN4yfnXwu6V7/0XWhDiM9T7jmN3M7Y5vVm2i2s5mZWXYtYyuzvAq4SdL+Sj5EqtaybaHPoqpf0ElFuQ8HPkdaJPvDpJI0RXdGxBW575aki/cQcCpwPylB2x7YLyIur4t9Oun5xwuBS0mrrBwFXA3sXbeCS9tiV+Gi3Ou+rq4uyv77lMTq1S39tTEzm3Uuyj29JHUBHyTlRo/KzQHcBjyFsSTxTuBtEXFp1e/opJHFWk3CHuAs0uhicVsz3BIRvwWeS8qmPwB8GlgBvKw+mcuOBv6NlHn/B/AvwOnAK+qTuXbGtvXPRM8kNprV7NnOZmZWExGrI+JE0uNwN+dmkfIlkRLHC4DtWkkUoYNGFm08jyx2vtozicVbzd3d3WsmqUx23MysE3lksX3ybOcrGBthFHAr8LyI+FPLcZ0sdiYni52vr6+vtE5ib28vy5YtA7z2s5mte5wsTr/CIiXHMjaJpTaqCPAX4PCIOL+l+E4WO5OTxblvskTPzySa2frIyeL0krQNqULMsxl7PvEPwNeAIxmr9xzAecA7I+LeKt/RSc8smnWMZsre+JlEMzObBjcwPlEcBraPiPcBuwA/LfR9PakMYCVOFs3aoJmyN16BxczMpsFGpETxbuC1EXFwRNwHEBE3A88BhoBHcr8nVf0CJ4tmLZpoJvPy5ctLP1Ns9wosZmY2TS4hjSZeUH8gIh6OiA+TKrn8qpXgfmaxQ/mZxdk12UzlZiavmJmtj/zM4vSS9LaI+K8m+84HToqIY6p8h0cWzRqYaORwstvMvsVsZmYzoZgoSuqStKekf5X0gbx/bp4tTUSsrJoogpNFW49NlAxONkFlstvMvsVsZmYzSdI/A78DriKteDeU9z8AfivpNS3H9m3ozuTb0JObqHTNVG8j+zazmVlrfBt6+kl6O/D52lvG6ivW3pPbDo+IL1aN75HFGZCHhY+RdIuklZJuk3SyJP/HMgVTGRmc7DbyZCOHvs1sZjZz/Hu0MUlPAz5Te1vYi/GJooDTJG1Z+Usiwlubt/yHWFub8TDgFOAh4HtAVysxu7u7o9MtXrw4ent7Q1L09vbG4sWLmz6+ePHi6O7ujnxdA4ju7u41fXp7e8cdq229vb0RESGp9Likpj7fzPmbmdnagBUxB36PritbvharSaVxrgcOIK0LvVHeHwBcW+hzSuXvmO0fcl3fgG3zH9A36tqPzH/x39hK3OlIFqeSrE31+GTJ3mwng5N9v5mZtaZqstiu36Prygb8LCeBS4ANGvSZB1yZr+PPKn/HbP+Q6/oGnJj/Mj+/rn0+sAK4tJW4U00Wp5qstTvZmwvJoEcOzcymXwvJYlt+j64rG/DXnCy+dpJ+r83J4n2Vv2O2f8h1fQMuz3+IG5Ucuxq4q5W4U00Wp5qstTvZczJoZrZuaiFZbMvv0XVlA1bm6/OiSfrtnZPFlVW/w7Oh20zSjcBmEfHEkmPnAa8j/Qewqu7Ykonidnd3v3Aqs6G7uroo+7OXxOrVq9t+fKqzjSebzQwTz4Y2M7PZIWk1qbxLqYjYq65/S79H1xeSbgf+H3B8RJw4Qb8PAR8F/hQRm1f5Ds+Gbr9u4O8Njq0s9JlRPT09E7a3+/hks4knO95MHcP+/n6WLVvG6tWrWbZsmRNFM7PONCd/j84hN5BmOr9P0n5lHSS9HHgf6U7bDZW/YbaHT9f1DbgRuLPBsfPyH9yGVeN2+jOLtT5TmUBjZmadh+q3odvye3Rd2YCDGJvp/AjwU+AMUlHuM3Jy+Eihz0GVv2O2f8h1fWOOPrMYMbuzoc3MbP3UQrLoZxYnvj7zgGtyMlhMGotb7dj/AfOqfoefWWwzSScCg8ALIuKqQvt84C/ADyJi36pxvYKLmZl1oqoruLTr9+i6RNL/A74FPCs3FZO7WmHupcB+EfHHqvH9zGL7nUv6Qzu6rv0w0jMWw/UfMDMzszX8e3QSEfEnYHfgHcD3gXtII4r35PfvAJ7TSqIIXht6Rkg6HTgCuBC4FNgGOIo0fL53RKyuGtMji2Zm1olaWRu6Hb9HrXlOFmeApHmkfxENAH3A3aR/KR0XEQ+0EtPJopmZdaIWk8Vp/z1qzXOy2KGcLJqZWSdqJVm0cpLuJU1c2Tcirm3X5zZo/RTNzMzMbBZtQnqes2o+V+lzThbNzMzMOttbJe3TruBOFs3MzMw62yHtDO5k0czMzKxzafIuU+Nk0czMzKwzfWSKn1/eTCfPhu5Qng1tZmadyLOhO4+TxQ4laTXwYF3zPFLF9mbe117Pz+9XTuPp1X/vVPs3Ol7WPllbo2sy3ddhpq5Bo2Od+Hehmb7+u1DtGpS1++9C8+/9d6E9fxc2jgivINdJZnsBbG/Tupj4ombf114DS4Al7TyPqfZvdLysfbK2Rtdkuq/DTF2DZq9DJ/xdaKav/y5Uuwb+u1D9GvjvQvv/LnjrvM2Z/brlkgrv64+18zym2r/R8bL2ydomu0bTZaauQaNjnfh3oZm+/rtQ7RqUtfvvQvX308V/F6wj+Tb0ek7SEoCI2Gt2z2R2+Tr4GtT4Ovga1Pg6+BpY4pFFMzMzM2vIyaKZmZmZNeRk0czMzMwacrJoZmZmZg15gouZmZmZNeSRRTMzMzNryMmimZmZmTXkZNGaJulwSddKWlmrvVU4tpGkMyTdKukBSb+RdPTsnGl7TXQdmjm+LmjiGmwg6TOS7pH0V0lnStpoFk51xkh6uqRv5Z/5TkknSVrv/h8raXNJ35B0t6S/SPqmpCfP9nnNpPz/wOL2kKSfz/Z5zQZJr5R0Q74Of5T03tk+J6tuvfsfmU3JH4FPAKeWHNsA+BPwUuAxwOuAYyW9YeZOb8ZMdB2aOb4umOxn/CDwQmA74B+BbYGTZubUZp6kecDFwE3Ak4BdgJcD6+Mvxs8DjwKeCjwFWAGcMatnNMMiYmFxA34JfG22z2umSXoZ8EXSfwePBbYGLpvNc7LWbDDbJ2CdIyIuAJDUU3JsBfDhQtNSSd8CngucOzNnODMmug7NHF8XNPEzHgq8OyLuyP1OAL4m6d8iYvXMnOWM2jpvz46IvwO3SToVOB745Kye2cx7GvDJiPgbgKRh4D9n95Rmj6TdgGcCX57lU5kNHwNOjIjv5vf3k/5BZR3GI4sdRNKxks7Pt3pD0rIJ+nZJOkbSLflW4W2STpa0YIbOdQPgecC033rppOvQLnP5Gkh6LGlE6aeF5htIIwtPacd35u+dzWuiBm19kh7TYszWTmT2/26cArxe0mMlPRo4GPjWFOJVNgeuQdHbgMtq/3CaSbN5HfLndga6Jf1C6dGMC9flf0Sv0yLCW4dsQAB/Aa4A7gGWTdD3M7n/BcBhpP+BPwR8D+iq67sRsHCCbV5d/6OBJZOc6+eB64AN19fr0Mx1WhevASkhDGDTQtujctt26+J/H6S7NL8CPgVsDPQBS/N3PLldP/Ncuw653z8CVwGrgUdI/1B43Pp0DQr9u4H7gFfN5M8/F64D8OQc7+f5v4du0gjzdbNxLbxN8e/SbJ+Atwp/WPC0wuubGv2HT3o+bDXwjbr2I/N/vG+sa1+c2xtte9X1P5qJk6ST8/8gNm32Z1tHr8OEx9fVa0AaQQzg6YW2J+S23nZcj7lwTYCtgEuBPwO3kJ7TWg0saNfPPNeuA+lu1TJS0tydt08B16wv16Cu/1tIz/duMJM//1y4DsAm+fWhhc9tmts2n43r4a31zbehO0hE3Npk1wNJt8BOq2s/AxgFDqqLe1BEaIJtSbPnKOk00iSXF0fE3c1+ropOuA7tNpevQUT8FbgN2KnQ/Cyg1t4Ws31NIuLXEfHyiNgsIp6RY10X6XneGTPL1+HxQC/w2YgYjYhR4HTgOZI2ncKPVcls/10oOBQ4KyIerv5TTN1sXoeIuA8YISWHaz7a2k9is83J4rppV9K/Eq8tNkbEStKtsV1bCapUDmU+6ZZbl6T5kjYsHP8ssA+wd0Tc1eK5T6fZug4THp9hs3INgDOBQaUyKk8ATgC+FHNjcku7rskOkhbma/MS4EN5m6um/TrkfyD+Fjg8/52YTxqd+kO7/vE4RW35uwAgaWtgT+C/p3B+M6Vd1+GLwLskPSX/XfgYcH3MwvObNjVOFtdNmwN3R5qVWe92YNMWk5cPAQ8C/w48P7/+NoCkXtIvhS2B32usvthslkmY8evQ5PGZNFvX4OPAD4GbScnDL0jldOaCdl2T15FGUu4jlRU6NCKuaP00265d1+FVwLNzjDtIZYT2b/ks26td1wDSxJarIuLXLZ/dzGnXdfgUqVTODTnOFsABLZ+lzRqXzlk3dQNl/9EDrCz0WVUlaEScQBohKjs2QvmM0Nk049ehmeMzbLauwcPAUXmba9p1TT7M+PJRc127rsMvgH+awnnNpLZcA4CIeF+rJzUL2vV3YTXw/rxZB/PI4rpplDRbrcz8Qp91na+Dr0EZX5PE18HXoMbXwSbkZHHddAfptkHZf/xbkG43VP6XcgfydfA1KONrkvg6+BrU+DrYhJwsrpuuI/3Z7lZszA8Y7wRcPwvnNBt8HXwNyviaJL4OvgY1vg42ISeL66ZzSSUKjq5rP4z03MnwTJ/QLPF18DUo42uS+Dr4GtT4OtiEPMGlg0g6mFTDDFKR4w0l1UpzjETE2QARcaOk/wCOkHQBqVDwNqTJBlcC58zsmU8vXwdfgzK+Jomvg69Bja+DTZuYA5XBvTW3AUtoXDF/SV3fecB7SEuQ/Z1UtuAUYOFs/xy+Dr4Gvia+Dr4Gvg7eOmdThAuqm5mZmVk5P7NoZmZmZg05WTQzMzOzhpwsmpmZmVlDThbNzMzMrCEni2ZmZmbWkJNFMzMzM2vIyaKZmZmZNeRk0czMzMwacrJoZtNO0gmSom7762yfVxWSlpb8DF+uGOOq/LlbJU378qqF+L+VtOF0xzczAyeLZjaLJG0g6SBJ/yPpDkl/l3SfpJ9LOlXS0+v6H1pI3FZK2rbu+DxJ1xT6fE/Si0qSvom2ZdP0sx0APC+//WREPFw4tqTuO3/WIMb5k5zbUN4/HTh8Os7bzKyek0Uza7cvAc8HXlZslPQk4IfA2cB+wJOADYHHANsDRwO/kPSO2mci4kzgf/LbjYCvSHpUIeyxwHPy6/uBQ0jr4LbiLfm8P97i54/L+78BX5mk7w6SXlBskPRk4NUTfSgi/hf4XX57rEcXzawdnCyaWbstj4gfRsQ1tYac1PwPY4ndCuAEYB/gDcBVuX1D4At5lK7mMODu/PrZ5KRM0rMYS9AA3hURI8BPSUlfcftTod+X6o69FiAilkbED4HfVP2BJT0P2CG/vSgiHmziY0fWvT8caObW9Vfz/gnAa5o7QzOz5k37MzRmZk14CynRq3ljRFxceyPpQuCaQp9TJH0zIh6OiD/l0cav52PHSroC+A+gNsp4cUR8GSAi7iONYK4h6e+Ft8tzUjid/qXw+luT9L2fNJr6aklPjog/SJpPSoqLxxv5FvChwvd+rYXzNTNryCOLZjYbisnUz4uJIkBEPAScVGjqAXYvHP8GMJzfzgOuALbL7+9iLNGaLS8svP6/SfqeCzxI+sd77ZZ7P/AP+fWXJ/n8T4FV+fULJPn/62Y2rfw/FTObDTsUXl/foM91de93rHt/BPCH/Lr4rN7bI+LPUzi3KcnJ2jPz24ciYtkkH7mHsVvJA5I2YuyW9NWkZLChiPg7sDy/fRzwlKrnbGY2ESeLZjYbNim8bpTY3TnBZ4iIv7L2LdfbgIuZXf/A2P9b72nyM6fn/RNIt9N3rGufTPF7NmvyM2ZmTXGyaGaz4b7C60bJzRMn+Ay5bE79pJCnAB+c2qlNmRq8bigiljL2XOXb8v4O4IIWvrPV2d9mZqWcLJrZbPh54fXODfrs0ugzuVzOV0jlcwB+X+j3YUnFyTMz7W5gdX79uAqfqx9F/GJ+drMZjy+8vqvCd5qZTcrJopnNhnMLr3eU9IriwbzayQcKTctJs6NrjmNspvQ9pOLXtVG4R5HqL27ELIiI1cAvauci6WlNfvQC4Pb8ehWwqJkP5ZnTPfntfaRb8WZm08bJopnNhi8BSwvvvyrpw5JeLOl1wHcZP7L4b7VRNkm7Mj6RPDwi7gDezthzjtsytrrJbFhSeL1bMx/IK7y8HfgIMBAR9c9sNvIsxkoGXZWTVTOzaeNk0cxmXESsAl7B2EzohcBHge8A5wG11UweAo6IiPMBJG1Muv1cqxF7fkR8Lce8m7Hn/QCOqV8VZQYVJ97s1+yHIuJbEXFCRJxV4buK8b/asJeZWYucLJrZrIiI24E9gTcDl5FGBR8CHgBuAj4LbBcR/1H42EnAM/LrPwH/WhfzW4zdvu0Cvizp0e36GRqJiKsZe8by1TnJbZdazcq7GCtUbmY2bRThiXNmNr0knQAcX9d8X0Q8dubPpjWSlrJ2bcezIuItTX7+NcA38tt3RsQXpu/s1nzHyxlbIebdEXHqdH+HmZlHFs3M2iAiLmCsHM5786Sd6XZs3t9Kqs9oZjbtPLJoZtNOUg9jM3RrHo6Ia8r6z0WSdiI9S1l0Z0T8ZhZOx8xs1jhZNDMzM7OGfBvazMzMzBpysmhmZmZmDTlZNDMzM7OGnCyamZmZWUNOFs3MzMysISeLZmZmZtaQk0UzMzMza+j/A0+tWzsKuqcfAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1152x432 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# This is the function for ode equation where oxt set to be variable\n", "def senana_mod2(z, t, oxt):\n", " oxtr,oxr = z\n", " doxtrdt = (-kon*oxt*oxtr + koff*oxr)\n", " doxrdt = (kon*oxt*oxtr -koff*oxr)\n", "\n", " return[doxtrdt,doxrdt] # it will return oxtr conc. and oxr conc. over time\n", "\n", "\n", "# Set the initial conditions and parameters\n", "oxtr0 = 2.54e-7 # molar\n", "oxr0 = 0\n", "z0 = [oxtr0, oxr0]\n", "ts = np.linspace(0, 600, 1000) # time in minutes\n", "kon = 8.8e+6 # per molar per min (from gulliver thesis)\n", "koff = 0.005 # per min (from gulliver thesis)\n", "# Volume and avagadro's number \n", "Av = 6e+23\n", "V = 1e-12 # litre It is HEK293 cells volume given as 1046 cubic micro meter in the paper\n", "Div = V*Av\n", "# Define the range of oxt values to plot\n", "start_value = 1e-12\n", "stop_value = 1e-6\n", "num_steps = 50\n", "\n", "# Use np.logspace to create an array with 7 equal steps in log space\n", "oxt_values = np.logspace(np.log10(start_value), np.log10(stop_value), num=num_steps)\n", "#oxt_values = np.linspace(1e-12, 1e-6, 5000)\n", "\n", "\n", "\n", "fig, ax1 = plt.subplots()\n", "fig.set_figheight(6)\n", "fig.set_figwidth(16)\n", "fig.subplots_adjust(right=0.5)\n", "ax2 = ax1.twinx() # create a second Y-axis\n", "ax1.set_xlabel('[OXT] (M)', fontsize=18, fontweight='bold')\n", "ax1.set_ylabel('[OXTR Complex] (pM)', fontsize=18, fontweight='bold')\n", "ax2.set_ylabel('[OXTR Complex] (comlexes/cell)', fontsize=18, fontweight='bold')\n", "\n", "#ax2.tick_params(axis='both', **tkw2)\n", "#plt.grid()\n", "for oxt in oxt_values:\n", " sol = odeint(senana_mod2, z0, ts, args=(oxt, ))\n", " oxr = sol[:, 1]\n", " Av = 6e+23\n", " V = 1e-12 # litre It is HEK293 cells volume given as 1046 cubic micro meter in the paper\n", " Div = V*Av\n", " oxr_c = oxr*Div # LR complex concentration\n", " ax1.plot(oxt, oxr[-1]/1e-12, 'ko') \n", " ax2.plot(oxt, oxr_c[-1]) \n", " \n", "\n", "\n", "tkw2 = dict(size=8, width=1.5, labelsize=18)\n", "ax1.tick_params(axis='both', **tkw2)\n", "ax2.tick_params(axis='both', **tkw2)\n", "#ax1.set_xlim(-13, -5)\n", "ax1.set_xscale('log')\n", "# insettwin1.set_ylim(0, 60.48)\n", "# inset1_ax.set_xticks(np.arange(0,60*36,500))\n", "ax1.set_xticks([1e-12,1e-11,1e-10,1e-9,1e-8,1e-7,1e-6])\n", "\n", "ax1.set_yticks([0,20000,40000,60000,80000,100000,120000, 140000, 160000, 180000, 200000, 220000, 240000, 260000])\n", "ax2.set_yticks([0,20000,40000,60000,80000,100000,120000, 140000, 160000])\n", "#ax1.set_yticks(np.arange(0, 1805, 150))\n", "\n", "# #plt.savefig(\"sens_oxr_kon\", dpi=400, bbox_inches='tight', format=\"jpg\") \n", "plt.savefig(\"oxt_dose_response_curve_hek\", dpi=400, bbox_inches='tight', format=\"jpg\") \n", "\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "374ce9d1", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }