import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.figure(figsize=(25,5)) plt.suptitle(f"comparing natural images", fontsize=24) for i in range(2,6): wyeth_path = f'/Users/tonyfu/Desktop/n01_conv{i}_nat50k_r.txt' wyeth_conv_nat_r = pd.read_csv(wyeth_path, sep=' ', header=None) wyeth_conv_nat_r.columns = ['UNIT', 'MAX_R', 'MIN_R', 'MAX_10_AVG', 'MIN_10_AVG'] my_path = f'/Users/tonyfu/Desktop/Bair Lab/borderownership/results/ground_truth/top_n/alexnet/conv{i}_responses.npy' my_conv_nat_r = np.load(my_path) my_conv_nat_r = np.mean(np.sort(my_conv_nat_r, axis=1)[:, -10:, 0], axis=1) plt.subplot(1,4,i-1) plt.scatter(wyeth_conv_nat_r.MAX_10_AVG, my_conv_nat_r) plt.xlabel('Wyeth', fontsize=14) plt.ylabel('Tony', fontsize=14) plt.title(f"conv{i}", fontsize=14) plt.gca().set_aspect('equal') # plt.xlim(-20, 150) # plt.ylim(-20, 150) plt.show() plt.figure(figsize=(25,5)) plt.suptitle(f"comparing rfmp4a", fontsize=24) for i in range(2,6): wyeth_path = f'/Users/tonyfu/Desktop/n01_conv{i}_bar4a_minmax.txt' wyeth_conv_bar_r = pd.read_csv(wyeth_path, sep=' ', header=None) wyeth_conv_bar_r.columns = ['UNIT', 'MIN_STIM_I', 'MIN_R', 'MAX_STIM_I', 'MAX_R'] my_path = f'/Users/tonyfu/Desktop/Bair Lab/borderownership/results/rfmp4a/mapping/alexnet/conv{i}_top5000_responses.txt' my_conv_bar_r = pd.read_csv(my_path, sep=' ', header=None) my_conv_bar_r.columns = ['UNIT', 'RANK', 'STIM_I', 'MAX_R'] my_conv_bar_r = my_conv_bar_r.loc[my_conv_bar_r.RANK == 0, ['UNIT', 'STIM_I', 'MAX_R']] plt.subplot(1,4,i-1) plt.scatter(wyeth_conv_bar_r.MAX_R, my_conv_bar_r.MAX_R) plt.xlabel('Wyeth', fontsize=14) plt.ylabel('Tony', fontsize=14) plt.title(f"conv{i}", fontsize=14) plt.gca().set_aspect('equal') # plt.xlim(-10, 45) # plt.ylim(-10, 45) plt.show()