// Joe added Oct 26 package sound; /* * conversion tools from tritonus (http://www.tritonus.org) */ /* * TConversionTool.java */ /* * Copyright (c) 1999,2000 by Florian Bomers * Copyright (c) 2000 by Matthias Pfisterer * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Library General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ public class TConversionTool { /** * Converts 2 successive bytes starting at byteOffset in * buffer to a signed integer sample with 16bit range. *

* For little endian, buffer[byteOffset] is interpreted as low byte, * whereas it is interpreted as high byte in big endian. *

This is a reference function. */ public static int bytesToInt16( byte [] buffer, int byteOffset, boolean bigEndian) { return bigEndian? ((buffer[byteOffset]<<8) | (buffer[byteOffset+1] & 0xFF)): ((buffer[byteOffset+1]<<8) | (buffer[byteOffset] & 0xFF)); } /** * Converts 3 successive bytes starting at byteOffset in * buffer to a signed integer sample with 24bit range. *

* For little endian, buffer[byteOffset] is interpreted as lowest byte, * whereas it is interpreted as highest byte in big endian. *

This is a reference function. */ public static int bytesToInt24( byte [] buffer, int byteOffset, boolean bigEndian) { return bigEndian? ((buffer[byteOffset]<<16) // let Java handle sign-bit | ((buffer[byteOffset+1] & 0xFF)<<8) // inhibit sign-bit handling | ((buffer[byteOffset+2] & 0xFF))): ((buffer[byteOffset+2]<<16) // let Java handle sign-bit | ((buffer[byteOffset+1] & 0xFF)<<8) // inhibit sign-bit handling | (buffer[byteOffset] & 0xFF)); } /** * Converts a 4 successive bytes starting at byteOffset in * buffer to a signed 32bit integer sample. *

* For little endian, buffer[byteOffset] is interpreted as lowest byte, * whereas it is interpreted as highest byte in big endian. *

This is a reference function. */ public static int bytesToInt32( byte [] buffer, int byteOffset, boolean bigEndian) { return bigEndian? ((buffer[byteOffset]<<24) // let Java handle sign-bit | ((buffer[byteOffset+1] & 0xFF)<<16) // inhibit sign-bit handling | ((buffer[byteOffset+2] & 0xFF)<<8) // inhibit sign-bit handling | (buffer[byteOffset+3] & 0xFF)): ((buffer[byteOffset+3]<<24) // let Java handle sign-bit | ((buffer[byteOffset+2] & 0xFF)<<16) // inhibit sign-bit handling | ((buffer[byteOffset+1] & 0xFF)<<8) // inhibit sign-bit handling | (buffer[byteOffset] & 0xFF)); } /////////////////////// ULAW /////////////////////////////////////////// private static final boolean ZEROTRAP=true; private static final short BIAS=0x84; private static final int CLIP=32635; private static final int exp_lut1[] ={ 0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 }; /* u-law to linear conversion table */ private static short [] u2l = { -32124, -31100, -30076, -29052, -28028, -27004, -25980, -24956, -23932, -22908, -21884, -20860, -19836, -18812, -17788, -16764, -15996, -15484, -14972, -14460, -13948, -13436, -12924, -12412, -11900, -11388, -10876, -10364, -9852, -9340, -8828, -8316, -7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140, -5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092, -3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004, -2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980, -1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436, -1372, -1308, -1244, -1180, -1116, -1052, -988, -924, -876, -844, -812, -780, -748, -716, -684, -652, -620, -588, -556, -524, -492, -460, -428, -396, -372, -356, -340, -324, -308, -292, -276, -260, -244, -228, -212, -196, -180, -164, -148, -132, -120, -112, -104, -96, -88, -80, -72, -64, -56, -48, -40, -32, -24, -16, -8, 0, 32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956, 23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764, 15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412, 11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316, 7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140, 5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092, 3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004, 2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980, 1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436, 1372, 1308, 1244, 1180, 1116, 1052, 988, 924, 876, 844, 812, 780, 748, 716, 684, 652, 620, 588, 556, 524, 492, 460, 428, 396, 372, 356, 340, 324, 308, 292, 276, 260, 244, 228, 212, 196, 180, 164, 148, 132, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 0 }; public static short ulaw2linear( byte ulawbyte) { return u2l[ulawbyte & 0xFF]; } /** * Converts a linear signed 16bit sample to a uLaw byte. * Ported to Java by fb. *
Originally by:
* Craig Reese: IDA/Supercomputing Research Center
* Joe Campbell: Department of Defense
* 29 September 1989
*/ public static byte linear2ulaw(int sample) { int sign, exponent, mantissa, ulawbyte; if (sample>32767) sample=32767; else if (sample<-32768) sample=-32768; /* Get the sample into sign-magnitude. */ sign = (sample >> 8) & 0x80; /* set aside the sign */ if (sign != 0) sample = -sample; /* get magnitude */ if (sample > CLIP) sample = CLIP; /* clip the magnitude */ /* Convert from 16 bit linear to ulaw. */ sample = sample + BIAS; exponent = exp_lut1[(sample >> 7) & 0xFF]; mantissa = (sample >> (exponent + 3)) & 0x0F; ulawbyte = ~(sign | (exponent << 4) | mantissa); if (ZEROTRAP) if (ulawbyte == 0) ulawbyte = 0x02; /* optional CCITT trap */ return((byte) ulawbyte); } /* * This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use. Users may copy or modify this source code without * charge. * * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law * * linear2alaw() accepts an 16-bit integer and encodes it as A-law data. * * Linear Input Code Compressed Code * ------------------------ --------------- * 0000000wxyza 000wxyz * 0000001wxyza 001wxyz * 000001wxyzab 010wxyz * 00001wxyzabc 011wxyz * 0001wxyzabcd 100wxyz * 001wxyzabcde 101wxyz * 01wxyzabcdef 110wxyz * 1wxyzabcdefg 111wxyz * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */ private static final byte QUANT_MASK = 0xf; /* Quantization field mask. */ private static final byte SEG_SHIFT = 4; /* Left shift for segment number. */ private static final short[] seg_end = { 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF }; /* * conversion table alaw to linear */ private static short [] a2l = { -5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736, -7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784, -2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368, -3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392, -22016, -20992, -24064, -23040, -17920, -16896, -19968, -18944, -30208, -29184, -32256, -31232, -26112, -25088, -28160, -27136, -11008, -10496, -12032, -11520, -8960, -8448, -9984, -9472, -15104, -14592, -16128, -15616, -13056, -12544, -14080, -13568, -344, -328, -376, -360, -280, -264, -312, -296, -472, -456, -504, -488, -408, -392, -440, -424, -88, -72, -120, -104, -24, -8, -56, -40, -216, -200, -248, -232, -152, -136, -184, -168, -1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184, -1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696, -688, -656, -752, -720, -560, -528, -624, -592, -944, -912, -1008, -976, -816, -784, -880, -848, 5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736, 7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784, 2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368, 3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392, 22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944, 30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136, 11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472, 15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568, 344, 328, 376, 360, 280, 264, 312, 296, 472, 456, 504, 488, 408, 392, 440, 424, 88, 72, 120, 104, 24, 8, 56, 40, 216, 200, 248, 232, 152, 136, 184, 168, 1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184, 1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696, 688, 656, 752, 720, 560, 528, 624, 592, 944, 912, 1008, 976, 816, 784, 880, 848 }; public static short alaw2linear( byte ulawbyte) { return a2l[ulawbyte & 0xFF]; } public static byte linear2alaw(short pcm_val) /* 2's complement (16-bit range) */ { byte mask; byte seg=8; byte aval; if (pcm_val >= 0) { mask = (byte) 0xD5; /* sign (7th) bit = 1 */ } else { mask = 0x55; /* sign bit = 0 */ pcm_val = (short) (-pcm_val - 8); } /* Convert the scaled magnitude to segment number. */ for (int i = 0; i < 8; i++) { if (pcm_val <= seg_end[i]) { seg=(byte) i; break; } } /* Combine the sign, segment, and quantization bits. */ if (seg >= 8) /* out of range, return maximum value. */ return (byte) ((0x7F ^ mask) & 0xFF); else { aval = (byte) (seg << SEG_SHIFT); if (seg < 2) aval |= (pcm_val >> 4) & QUANT_MASK; else aval |= (pcm_val >> (seg + 3)) & QUANT_MASK; return (byte) ((aval ^ mask) & 0xFF); } } /** * Converts a 16 bit sample of type int to 2 bytes in an array. * sample is interpreted as signed (as Java does). *

* For little endian, buffer[byteOffset] is filled with low byte of sample, * and buffer[byteOffset+1] is filled with high byte of sample + sign bit. *

For big endian, this is reversed. *

Before calling this function, it should be assured that * sample is in the 16bit range - it will not be clipped. *

This is a reference function. */ public static void intToBytes16( int sample, byte [] buffer, int byteOffset, boolean bigEndian) { if (bigEndian) { buffer[byteOffset++]=( byte ) (sample >> 8); buffer[byteOffset]=( byte ) (sample & 0xFF); } else { buffer[byteOffset++]=( byte ) (sample & 0xFF); buffer[byteOffset]=( byte ) (sample >> 8); } } /** * Converts a 24 bit sample of type int to 3 bytes in an array. * sample is interpreted as signed (as Java does). *

* For little endian, buffer[byteOffset] is filled with low byte of sample, * and buffer[byteOffset+2] is filled with the high byte of sample + * sign bit. *

For big endian, this is reversed. *

Before calling this function, it should be assured that * sample is in the 24bit range - it will not be clipped. *

This is a reference function. */ public static void intToBytes24( int sample, byte [] buffer, int byteOffset, boolean bigEndian) { if (bigEndian) { buffer[byteOffset++]=( byte ) (sample >> 16); buffer[byteOffset++]=( byte ) ((sample >>> 8) & 0xFF); buffer[byteOffset]=( byte ) (sample & 0xFF); } else { buffer[byteOffset++]=( byte ) (sample & 0xFF); buffer[byteOffset++]=( byte ) ((sample >>> 8) & 0xFF); buffer[byteOffset]=( byte ) (sample >> 16); } } /** * Converts a 32 bit sample of type int to 4 bytes in an array. * sample is interpreted as signed (as Java does). *

* For little endian, buffer[byteOffset] is filled with lowest byte of * sample, and buffer[byteOffset+3] is filled with the high byte of * sample + sign bit. *

For big endian, this is reversed. *

This is a reference function. */ public static void intToBytes32( int sample, byte [] buffer, int byteOffset, boolean bigEndian) { if (bigEndian) { buffer[byteOffset++]=( byte ) (sample >> 24); buffer[byteOffset++]=( byte ) ((sample >>> 16) & 0xFF); buffer[byteOffset++]=( byte ) ((sample >>> 8) & 0xFF); buffer[byteOffset]=( byte ) (sample & 0xFF); } else { buffer[byteOffset++]=( byte ) (sample & 0xFF); buffer[byteOffset++]=( byte ) ((sample >>> 8) & 0xFF); buffer[byteOffset++]=( byte ) ((sample >>> 16) & 0xFF); buffer[byteOffset]=( byte ) (sample >> 24); } } /* * Byte<->Int conversions for unsigned pcm data were written * by myself with help from Real's Java How-To: * http://www.rgagnon.com/javadetails/java-0026.html */ public static int unsignedByteToInt(byte b) { /* * & 0xFF while seemingly doing nothing to the individual bits, * forces java to recognize the byte as unsigned. so, we return to * the calling function a number between 0 and 256. */ return ((int) b & 0xFF); } public static int unsignedByteToInt16(byte[] buffer, int offset, boolean isBigEndian) { /* * here, we want to take the first byte and shift it left * 8 bits then concatenate on the 8 bits in the second byte. * now we have a 16 bit number that java will recognize as * unsigned, so we return a number in the range [0, 65536] */ if(isBigEndian) { return ( (unsignedByteToInt(buffer[offset]) << 8) | unsignedByteToInt(buffer[offset+1]) ); } else { return( (unsignedByteToInt(buffer[offset+1]) << 8) | unsignedByteToInt(buffer[offset])); } } public static int unsignedByteToInt24(byte[] buffer, int offset, boolean isBigEndian) { if(isBigEndian) { return ( (unsignedByteToInt(buffer[offset]) << 16) | (unsignedByteToInt(buffer[offset+1]) << 8) | unsignedByteToInt(buffer[offset+2])); } else { return ( (unsignedByteToInt(buffer[offset+2]) << 16) | (unsignedByteToInt(buffer[offset+1]) << 8) | unsignedByteToInt(buffer[offset])); } } public static int unsignedByteToInt32(byte[] buffer, int offset, boolean isBigEndian) { if(isBigEndian) { return( (unsignedByteToInt(buffer[offset]) << 24) | (unsignedByteToInt(buffer[offset+1]) << 16) | (unsignedByteToInt(buffer[offset+2]) << 8) | unsignedByteToInt(buffer[offset+3]) ); } else { return((unsignedByteToInt(buffer[offset+3]) << 24) | (unsignedByteToInt(buffer[offset+2]) << 16) | (unsignedByteToInt(buffer[offset+1]) << 8) | unsignedByteToInt(buffer[offset]) ); } } public static byte intToUnsignedByte(int sample) { /* * does the reverse of the function above * we have an integer that is signed, so we're in the range * [-128, 127], we want to convert to an unsigned number in * the range [0,256], then put that into an unsigned byte * all while java tries to treat everythign as signed. * * so.... say we want to set the sample value to -128 * in our unsigned byte, this translates to 0, so we want * java's representation of -128: 10000000 to instead be stored * as 0: 00000000 so, we simply xor with -128, flipping the sign bit * * another example we want to store the max value 127: 01111111 * translating into the unsigned range, the max is 256: 11111111 * again, you can see all we need to change is the sign bit. * * and lastly, for something in the middle: * say we want to store the value 0: 00000000 * translating into the unsigned range, we have the middle * value 128: 10000000 * again, we just want to flip the first bit * * something a little more tricky... say we want to store the value 32 * now this translates to 32--128 = 160 in unsigned representation * so we start with 32 = 00100000 and we want to go to * 160 = 10100000 * * see, we just flip the sign bit, its the same as adding 128 which * is how we translate between [-128,127] and [0,256]. */ return((byte)(sample ^ -128)); } public static void intToUnsignedBytes16(int sample, byte [] buffer, int byteOffset, boolean bigEndian) { /* * for this comment only, treat ^ not as XOR as we use it in java * but as an exponent symbol like on a calculator, i thought 2^15 * would be clearer than 32768. * the theory here is very simmilar to the 8 bit conversion we * did above. only now we have 16 bits we want to write into. * so, we're going from the range [-2^15, 2^15-1] into the range * [0, 2^16]. again, to translate, we just need to add 2^15 to * our number, so we get the first byte, by shifting right 8 bits, * (note: >>> is unsigned shift), and then XOR with -128 to flip the * sign bit. for the second byte, we just want the last 8 bits * of our integer, so we & with 0xff to tell java to treat this * as unsigned, and just copy over the bit values. */ if(bigEndian) { buffer[byteOffset] = (byte)(sample >>> 8 ^ -128); buffer[byteOffset+1] = (byte)(sample & 0xff); } else { buffer[byteOffset+1] = (byte)(sample >>> 8 ^ -128); buffer[byteOffset] = (byte)(sample & 0xff); } } public static void intToUnsignedBytes24(int sample, byte [] buffer, int byteOffset, boolean bigEndian) { if(bigEndian) { buffer[byteOffset] = (byte)(sample >>> 16 ^ -128); buffer[byteOffset+1] = (byte)(sample >>> 8); buffer[byteOffset +2] = (byte)(sample & 0xff); } else { buffer[byteOffset+2] = (byte)(sample >>> 16 ^ -128); buffer[byteOffset+1] = (byte)(sample >>> 8); buffer[byteOffset] = (byte)(sample & 0xff); } } public static void intToUnsignedBytes32(int sample, byte [] buffer, int byteOffset, boolean bigEndian) { if(bigEndian) { buffer[byteOffset] = (byte)(sample >>> 24 ^ -128); buffer[byteOffset+1] = (byte)(sample >>> 16); buffer[byteOffset+2] = (byte)(sample >>> 8); buffer[byteOffset+3] = (byte)(sample & 0xff); } else { buffer[byteOffset+3] = (byte)(sample >>> 24 ^ -128); buffer[byteOffset+2] = (byte)(sample >>> 16); buffer[byteOffset+1] = (byte)(sample >>> 8); buffer[byteOffset] = (byte)(sample & 0xff); } } }