---
title: "Combin fine clustering wth large dataset"
author: "Luise A. Seeker"
date: "25/10/2021"
output: html_document
---
```{r}
library(Seurat)
library(dplyr)
library(here)
library(ggsci)
```
# Prepare colours
```{r}
mypal <- pal_npg("nrc", alpha = 0.7)(10)
mypal2 <-pal_tron("legacy", alpha = 0.7)(7)
mypal3 <- pal_lancet("lanonc", alpha = 0.7)(9)
mypal4 <- pal_simpsons(palette = c("springfield"), alpha = 0.7)(16)
mypal5 <- pal_rickandmorty(palette = c("schwifty"), alpha = 0.7)(6)
mypal6 <- pal_futurama(palette = c("planetexpress"), alpha = 0.7)(5)
mypal7 <- pal_startrek(palette = c("uniform"), alpha = 0.7)(5)
mycoloursP<- c(mypal, mypal2, mypal3, mypal4, mypal5, mypal6, mypal7, "black", "blue")
```
# Load datasets
```{r}
astr <-readRDS(here("data",
"single_nuc_data",
"astrocytes",
"HCA_astrocytes.RDS"))
micro <- readRDS(here("data",
"single_nuc_data",
"microglia",
"HCA_microglia.RDS"))
vasc <- readRDS(here("data",
"single_nuc_data",
"vascular_cells",
"HCA_vascular_cells.RDS"))
neur <- readRDS(here("data",
"single_nuc_data",
"neurons",
"HCA_neurons.RDS"))
nad_ol <- readRDS(here("data",
"single_nuc_data",
"oligodendroglia",
"srt_oligos_and_opcs_LS.RDS"))
```
# Extract relevant cluster information
```{r}
names(astr@meta.data)
astr_df <- data.frame(Barcode = astr$Barcode,
Fine_cluster = astr$astrocytes_clu)
names(micro@meta.data)
micro_df <- data.frame(Barcode = micro$Barcode,
Fine_cluster = micro$microglia_clu)
names(vasc@meta.data)
vasc_df <- data.frame(Barcode = vasc$Barcode,
Fine_cluster = vasc$vascular_cells_clu)
names(neur@meta.data)
neur_df <- data.frame(Barcode = neur$Barcode,
Fine_cluster = neur$neurons_clu)
names(nad_ol@meta.data)
nad_ol_df <- data.frame(Barcode = nad_ol$Barcode,
Fine_cluster = nad_ol$ol_clusters_named)
```
# combine all generated dataframes
```{r}
main_df <- rbind(astr_df, micro_df, vasc_df, neur_df, nad_ol_df)
```
# Detatch cell type datasets
```{r}
remove(astr)
remove(micro)
remove(vasc)
remove(neur)
remove(nad_ol)
```
# Read in complete dataset
```{r}
seur <- readRDS(here("data",
"single_nuc_data",
"all_cell_types",
"srt_anno_01.RDS"))
```
```{r}
seur_met <- seur@meta.data
main_df$match <- as.factor(ifelse(main_df$Barcode %in% seur$Barcode,
"match",
"no_match"))
seur_met$match <- as.factor(ifelse(seur_met$Barcode %in% main_df$Barcode,
"match",
"no_match"))
seur@meta.data$match <- seur_met$match
DimPlot(seur, group.by = "match")
```
```{r}
summary(main_df$Barcode == seur_met$Barcode)
barcode_oder <- seur_met$Barcode
main_DF <- main_df[match(barcode_oder, main_df$Barcode),]
summary(main_df$Fine_cluster)
main_DF$Fine_cluster_final <- ifelse(main_DF$Barcode %in% main_df$Barcode,
paste(main_DF$Fine_cluster),
"Immune")
summary(main_DF$Barcode == seur_met$Barcode)
id_vector <- main_DF$Fine_cluster_final
seur$Fine_cluster <- id_vector
DimPlot(seur, reduction = "umap", label = F,cols = mycoloursP,
group.by = "Fine_cluster")
```
```{r}
saveRDS(seur, here("data",
"single_nuc_data",
"all_cell_types",
"srt_fine_anno_01.RDS"))
```