2021-12-01 21:14:45 | INFO : Logging experiment exp160f_traintest_musicnet_aligned_pitch_unet_veryverylarge_test10files_augall_AdamW 2021-12-01 21:14:45 | INFO : Experiment config: do training = True 2021-12-01 21:14:45 | INFO : Experiment config: do validation = True 2021-12-01 21:14:45 | INFO : Experiment config: do testing = True 2021-12-01 21:14:45 | INFO : Training set parameters: {'context': 75, 'stride': 50, 'compression': 10, 'aug:transpsemitones': 5, 'aug:randomeq': 20, 'aug:noisestd': 0.0001, 'aug:tuning': True} 2021-12-01 21:14:45 | INFO : Validation set parameters: {'context': 75, 'stride': 50, 'compression': 10} 2021-12-01 21:14:45 | INFO : Test set parameters: {'context': 75, 'stride': 1, 'compression': 10} 2021-12-01 21:14:45 | INFO : Training parameters: {'batch_size': 25, 'shuffle': True, 'num_workers': 16} 2021-12-01 21:14:45 | INFO : Trained model saved in /tsi/clusterhome/cweiss/models/exp160f_traintest_musicnet_aligned_pitch_unet_veryverylarge_test10files_augall_AdamW.pt 2021-12-01 21:14:45 | INFO : --- Training config: ----------------------------------------- 2021-12-01 21:14:45 | INFO : Maximum number of epochs: 100 2021-12-01 21:14:45 | INFO : Criterion (Loss): BCELoss 2021-12-01 21:14:45 | INFO : Optimizer parameters: {'name': 'AdamW', 'initial_lr': 0.001, 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0.01, 'amsgrad': False} 2021-12-01 21:14:45 | INFO : Scheduler parameters: {'use_scheduler': True, 'name': 'ReduceLROnPlateau', 'mode': 'min', 'factor': 0.5, 'patience': 5, 'threshold': 0.0001, 'threshold_mode': 'rel', 'cooldown': 0, 'min_lr': 1e-06, 'eps': 1e-08, 'verbose': False} 2021-12-01 21:14:45 | INFO : Early stopping parameters: {'use_early_stopping': True, 'mode': 'min', 'min_delta': 1e-05, 'patience': 12, 'percentage': False} 2021-12-01 21:14:45 | INFO : Test parameters: {'batch_size': 50, 'shuffle': False, 'num_workers': 8} 2021-12-01 21:14:45 | INFO : Save filewise results = True, in folder /tsi/clusterhome/cweiss/code/deep_pitch_estimation/experiments/results_filewise/exp160f_traintest_musicnet_aligned_pitch_unet_veryverylarge_test10files_augall_AdamW.csv 2021-12-01 21:14:45 | INFO : Save model predictions = True, in folder /tsi/clusterhome/cweiss/predictions/exp160f_traintest_musicnet_aligned_pitch_unet_veryverylarge_test10files_augall_AdamW 2021-12-01 20:55:25 | INFO : ###################### START TRAINING ###################### 2021-12-01 21:14:54 | INFO : Epoch #0 finished. Train Loss: 0.0821, Val Loss: 0.0768 with lr: 0.00100 2021-12-01 21:14:55 | INFO : .... model of epoch 0 saved. 2021-12-01 21:34:07 | INFO : Epoch #1 finished. Train Loss: 0.0693, Val Loss: 0.0725 with lr: 0.00100 2021-12-01 21:34:08 | INFO : .... model of epoch #1 saved. 2021-12-01 21:53:20 | INFO : Epoch #2 finished. Train Loss: 0.0680, Val Loss: 0.0717 with lr: 0.00100 2021-12-01 21:53:20 | INFO : .... model of epoch #2 saved. 2021-12-01 22:12:32 | INFO : Epoch #3 finished. Train Loss: 0.0644, Val Loss: 0.0704 with lr: 0.00100 2021-12-01 22:12:33 | INFO : .... model of epoch #3 saved. 2021-12-01 22:31:44 | INFO : Epoch #4 finished. Train Loss: 0.0652, Val Loss: 0.0703 with lr: 0.00100 2021-12-01 22:31:44 | INFO : .... model of epoch #4 saved. 2021-12-01 22:50:56 | INFO : Epoch #5 finished. Train Loss: 0.0623, Val Loss: 0.0698 with lr: 0.00100 2021-12-01 22:50:57 | INFO : .... model of epoch #5 saved. 2021-12-01 23:10:08 | INFO : Epoch #6 finished. Train Loss: 0.0613, Val Loss: 0.0688 with lr: 0.00100 2021-12-01 23:10:09 | INFO : .... model of epoch #6 saved. 2021-12-01 23:29:20 | INFO : Epoch #7 finished. Train Loss: 0.0596, Val Loss: 0.0692 with lr: 0.00100 2021-12-01 23:48:32 | INFO : Epoch #8 finished. Train Loss: 0.0591, Val Loss: 0.0679 with lr: 0.00100 2021-12-01 23:48:33 | INFO : .... model of epoch #8 saved. 2021-12-02 00:07:44 | INFO : Epoch #9 finished. Train Loss: 0.0641, Val Loss: 0.0702 with lr: 0.00100 2021-12-02 00:26:55 | INFO : Epoch #10 finished. Train Loss: 0.0619, Val Loss: 0.0677 with lr: 0.00100 2021-12-02 00:26:56 | INFO : .... model of epoch #10 saved. 2021-12-02 00:46:08 | INFO : Epoch #11 finished. Train Loss: 0.0579, Val Loss: 0.0678 with lr: 0.00100 2021-12-02 01:05:19 | INFO : Epoch #12 finished. Train Loss: 0.0570, Val Loss: 0.0721 with lr: 0.00100 2021-12-02 01:24:31 | INFO : Epoch #13 finished. Train Loss: 0.0586, Val Loss: 0.0696 with lr: 0.00100 2021-12-02 01:43:43 | INFO : Epoch #14 finished. Train Loss: 0.0569, Val Loss: 0.0672 with lr: 0.00100 2021-12-02 01:43:44 | INFO : .... model of epoch #14 saved. 2021-12-02 02:02:56 | INFO : Epoch #15 finished. Train Loss: 0.0553, Val Loss: 0.0672 with lr: 0.00100 2021-12-02 02:02:57 | INFO : .... model of epoch #15 saved. 2021-12-02 02:22:09 | INFO : Epoch #16 finished. Train Loss: 0.0550, Val Loss: 0.0710 with lr: 0.00100 2021-12-02 02:41:21 | INFO : Epoch #17 finished. Train Loss: 0.0541, Val Loss: 0.0686 with lr: 0.00100 2021-12-02 03:00:33 | INFO : Epoch #18 finished. Train Loss: 0.0536, Val Loss: 0.0685 with lr: 0.00100 2021-12-02 03:19:44 | INFO : Epoch #19 finished. Train Loss: 0.0525, Val Loss: 0.0681 with lr: 0.00100 2021-12-02 03:38:56 | INFO : Epoch #20 finished. Train Loss: 0.0527, Val Loss: 0.0697 with lr: 0.00100 2021-12-02 03:58:07 | INFO : Epoch #21 finished. Train Loss: 0.0524, Val Loss: 0.0696 with lr: 0.00100 2021-12-02 04:17:19 | INFO : Epoch #22 finished. Train Loss: 0.0481, Val Loss: 0.0685 with lr: 0.00050 2021-12-02 04:36:31 | INFO : Epoch #23 finished. Train Loss: 0.0471, Val Loss: 0.0696 with lr: 0.00050 2021-12-02 04:55:43 | INFO : Epoch #24 finished. Train Loss: 0.0462, Val Loss: 0.0687 with lr: 0.00050 2021-12-02 05:14:56 | INFO : Epoch #25 finished. Train Loss: 0.0456, Val Loss: 0.0703 with lr: 0.00050 2021-12-02 05:34:08 | INFO : Epoch #26 finished. Train Loss: 0.0450, Val Loss: 0.0721 with lr: 0.00050 2021-12-02 05:53:20 | INFO : Epoch #27 finished. Train Loss: 0.0445, Val Loss: 0.0705 with lr: 0.00050 2021-12-02 05:53:20 | INFO : ### trained model saved in /tsi/clusterhome/cweiss/models/exp160f_traintest_musicnet_aligned_pitch_unet_veryverylarge_test10files_augall_AdamW.pt 2021-12-02 05:53:20 | INFO : ###################### START TESTING ###################### 2021-12-02 05:53:58 | INFO : file 2106_Haydn_OP64NO5_QuartetNo.npy tested. Cosine sim: 0.761374908067803 2021-12-02 05:54:26 | INFO : file 1819_Mozart_K375_Serenadein.npy tested. Cosine sim: 0.7681178485560861 2021-12-02 05:54:49 | INFO : file 2416_Beethoven_OP71_Sextetin.npy tested. Cosine sim: 0.6869153820185869 2021-12-02 05:55:05 | INFO : file 2303_Bach_BWV850_WTKI.npy tested. Cosine sim: 0.8012534184237226 2021-12-02 05:55:35 | INFO : file 1759_Schubert_D958_PianoSonata.npy tested. Cosine sim: 0.7720114857981569 2021-12-02 05:55:52 | INFO : file 2191_Bach_BWV1006_ViolinPartita.npy tested. Cosine sim: 0.8477822297997628 2021-12-02 05:57:04 | INFO : file 2629_Beethoven_OP96_ViolinSonata.npy tested. Cosine sim: 0.8047166392610815 2021-12-02 05:57:23 | INFO : file 2382_Beethoven_OP130_StringQuartet.npy tested. Cosine sim: 0.6195368771488109 2021-12-02 05:57:44 | INFO : file 2556_Beethoven_OP109_PianoSonata.npy tested. Cosine sim: 0.8139482157184252 2021-12-02 05:58:06 | INFO : file 2298_Bach_BWV1010_CelloSuite.npy tested. Cosine sim: 0.7460470343428083 2021-12-02 05:58:06 | INFO : ### Testing done. ################################################ 2021-12-02 05:58:06 | INFO : # Results for large test set (10 files) ######################### 2021-12-02 05:58:06 | INFO : Mean precision: 0.719309963926187 2021-12-02 05:58:06 | INFO : Mean recall: 0.7785365691619943 2021-12-02 05:58:06 | INFO : Mean f_measure: 0.7459803068888746 2021-12-02 05:58:06 | INFO : Mean cosine_sim: 0.7621704039135244 2021-12-02 05:58:06 | INFO : Mean binary_crossentropy: 0.06438259874457747 2021-12-02 05:58:06 | INFO : Mean euclidean_distance: 0.8355650786579096 2021-12-02 05:58:06 | INFO : Mean binary_accuracy: 0.9826076631762557 2021-12-02 05:58:06 | INFO : Mean soft_accuracy: 0.9719966145189195 2021-12-02 05:58:06 | INFO : Mean accum_energy: 0.5477150998041107 2021-12-02 05:58:06 | INFO : Mean roc_auc_measure: 0.9869811755451134 2021-12-02 05:58:06 | INFO : Mean average_precision_score: 0.791068597076553 2021-12-02 05:58:06 | INFO : Mean Precision: 0.719309963926187 2021-12-02 05:58:06 | INFO : Mean Recall: 0.7785365691619943 2021-12-02 05:58:06 | INFO : Mean Accuracy: 0.5984862680158787 2021-12-02 05:58:06 | INFO : Mean Substitution Error: 0.10879251883686866 2021-12-02 05:58:06 | INFO : Mean Miss Error: 0.1126709120011371 2021-12-02 05:58:06 | INFO : Mean False Alarm Error: 0.20431954464360835 2021-12-02 05:58:06 | INFO : Mean Total Error: 0.4257829754816142 2021-12-02 05:58:06 | INFO : Mean Chroma Precision: 0.736741690811284 2021-12-02 05:58:06 | INFO : Mean Chroma Recall: 0.797290463959782 2021-12-02 05:58:06 | INFO : Mean Chroma Accuracy: 0.6212433011072804 2021-12-02 05:58:06 | INFO : Mean Chroma Substitution Error: 0.090038624039081 2021-12-02 05:58:06 | INFO : Mean Chroma Miss Error: 0.1126709120011371 2021-12-02 05:58:06 | INFO : Mean Chroma False Alarm Error: 0.20431954464360835 2021-12-02 05:58:06 | INFO : Mean Chroma Total Error: 0.40702908068382654 2021-12-02 05:58:06 | INFO : 2021-12-02 05:58:06 | INFO : Framewise precision: 0.7361866746925944 2021-12-02 05:58:06 | INFO : Framewise recall: 0.775435317432492 2021-12-02 05:58:06 | INFO : Framewise f_measure: 0.7533574158423967 2021-12-02 05:58:06 | INFO : Framewise cosine_sim: 0.7703445106064007 2021-12-02 05:58:06 | INFO : Framewise binary_crossentropy: 0.07427467353446993 2021-12-02 05:58:06 | INFO : Framewise euclidean_distance: 0.9049888992690053 2021-12-02 05:58:06 | INFO : Framewise binary_accuracy: 0.9805314344780697 2021-12-02 05:58:06 | INFO : Framewise soft_accuracy: 0.9685183148077309 2021-12-02 05:58:06 | INFO : Framewise accum_energy: 0.5561585217409026 2021-12-02 05:58:06 | INFO : Framewise roc_auc_measure: 0.9853619413721916 2021-12-02 05:58:06 | INFO : Framewise average_precision_score: 0.7992735855019596 2021-12-02 05:58:06 | INFO : Framewise Precision: 0.7361866746925944 2021-12-02 05:58:06 | INFO : Framewise Recall: 0.775435317432492 2021-12-02 05:58:06 | INFO : Framewise Accuracy: 0.6068262031773675 2021-12-02 05:58:06 | INFO : Framewise Substitution Error: 0.10792007685807019 2021-12-02 05:58:06 | INFO : Framewise Miss Error: 0.11664460570943808 2021-12-02 05:58:06 | INFO : Framewise False Alarm Error: 0.17929309906943036 2021-12-02 05:58:06 | INFO : Framewise Total Error: 0.40385778163693864 2021-12-02 05:58:06 | INFO : Framewise Chroma Precision: 0.7565739493441431 2021-12-02 05:58:06 | INFO : Framewise Chroma Recall: 0.7965845140646928 2021-12-02 05:58:06 | INFO : Framewise Chroma Accuracy: 0.633804504999566 2021-12-02 05:58:06 | INFO : Framewise Chroma Substitution Error: 0.08677088022586936 2021-12-02 05:58:06 | INFO : Framewise Chroma Miss Error: 0.11664460570943808 2021-12-02 05:58:06 | INFO : Framewise Chroma False Alarm Error: 0.17929309906943036 2021-12-02 05:58:06 | INFO : Framewise Chroma Total Error: 0.38270858500473787 2021-12-02 05:58:23 | INFO : file 1819_Mozart_K375_Serenadein.npy tested. Cosine sim: 0.7829133798690211 2021-12-02 05:58:36 | INFO : file 2303_Bach_BWV850_WTKI.npy tested. Cosine sim: 0.8061803944766784 2021-12-02 05:58:49 | INFO : file 2382_Beethoven_OP130_StringQuartet.npy tested. Cosine sim: 0.6342717223397216 2021-12-02 05:58:49 | INFO : ### Testing done. ################################################ 2021-12-02 05:58:49 | INFO : # Results for small test set (3 files), first 90s ############## 2021-12-02 05:58:49 | INFO : Mean precision: 0.7033774301643044 2021-12-02 05:58:49 | INFO : Mean recall: 0.7501188384623695 2021-12-02 05:58:49 | INFO : Mean f_measure: 0.7257812790974417 2021-12-02 05:58:49 | INFO : Mean cosine_sim: 0.7411218322284737 2021-12-02 05:58:49 | INFO : Mean binary_crossentropy: 0.0683550430570924 2021-12-02 05:58:49 | INFO : Mean euclidean_distance: 0.8943089923370197 2021-12-02 05:58:49 | INFO : Mean binary_accuracy: 0.9809464758125473 2021-12-02 05:58:49 | INFO : Mean soft_accuracy: 0.9692632481087298 2021-12-02 05:58:49 | INFO : Mean accum_energy: 0.5386484093851042 2021-12-02 05:58:49 | INFO : Mean roc_auc_measure: 0.9863491262881902 2021-12-02 05:58:49 | INFO : Mean average_precision_score: 0.7738369081632039 2021-12-02 05:58:49 | INFO : Mean Precision: 0.7033774301643044 2021-12-02 05:58:49 | INFO : Mean Recall: 0.7501188384623695 2021-12-02 05:58:49 | INFO : Mean Accuracy: 0.5758421089607771 2021-12-02 05:58:49 | INFO : Mean Substitution Error: 0.09952153425567704 2021-12-02 05:58:49 | INFO : Mean Miss Error: 0.15035962728195337 2021-12-02 05:58:49 | INFO : Mean False Alarm Error: 0.22152735000347487 2021-12-02 05:58:49 | INFO : Mean Total Error: 0.47140851154110525 2021-12-02 05:58:49 | INFO : Mean Chroma Precision: 0.7209786814190533 2021-12-02 05:58:49 | INFO : Mean Chroma Recall: 0.7693689813113181 2021-12-02 05:58:49 | INFO : Mean Chroma Accuracy: 0.5974062432576317 2021-12-02 05:58:49 | INFO : Mean Chroma Substitution Error: 0.08027139140672847 2021-12-02 05:58:49 | INFO : Mean Chroma Miss Error: 0.15035962728195337 2021-12-02 05:58:49 | INFO : Mean Chroma False Alarm Error: 0.22152735000347487 2021-12-02 05:58:49 | INFO : Mean Chroma Total Error: 0.45215836869215664 2021-12-02 05:58:49 | INFO : 2021-12-02 05:58:49 | INFO : Framewise precision: 0.7033774301643044 2021-12-02 05:58:49 | INFO : Framewise recall: 0.7501188384623696 2021-12-02 05:58:49 | INFO : Framewise f_measure: 0.7257812790974418 2021-12-02 05:58:49 | INFO : Framewise cosine_sim: 0.7411218322284737 2021-12-02 05:58:49 | INFO : Framewise binary_crossentropy: 0.0683550430570924 2021-12-02 05:58:49 | INFO : Framewise euclidean_distance: 0.8943089923370198 2021-12-02 05:58:49 | INFO : Framewise binary_accuracy: 0.9809464758125472 2021-12-02 05:58:49 | INFO : Framewise soft_accuracy: 0.9692632481087298 2021-12-02 05:58:49 | INFO : Framewise accum_energy: 0.5386484093851042 2021-12-02 05:58:49 | INFO : Framewise roc_auc_measure: 0.98634912628819 2021-12-02 05:58:49 | INFO : Framewise average_precision_score: 0.7738369081632039 2021-12-02 05:58:49 | INFO : Framewise Precision: 0.7033774301643044 2021-12-02 05:58:49 | INFO : Framewise Recall: 0.7501188384623696 2021-12-02 05:58:49 | INFO : Framewise Accuracy: 0.5758421089607771 2021-12-02 05:58:49 | INFO : Framewise Substitution Error: 0.09952153425567703 2021-12-02 05:58:49 | INFO : Framewise Miss Error: 0.15035962728195335 2021-12-02 05:58:49 | INFO : Framewise False Alarm Error: 0.2215273500034749 2021-12-02 05:58:49 | INFO : Framewise Total Error: 0.4714085115411053 2021-12-02 05:58:49 | INFO : Framewise Chroma Precision: 0.7209786814190533 2021-12-02 05:58:49 | INFO : Framewise Chroma Recall: 0.7693689813113183 2021-12-02 05:58:49 | INFO : Framewise Chroma Accuracy: 0.5974062432576318 2021-12-02 05:58:49 | INFO : Framewise Chroma Substitution Error: 0.08027139140672847 2021-12-02 05:58:49 | INFO : Framewise Chroma Miss Error: 0.15035962728195335 2021-12-02 05:58:49 | INFO : Framewise Chroma False Alarm Error: 0.2215273500034749 2021-12-02 05:58:49 | INFO : Framewise Chroma Total Error: 0.4521583686921567 2021-12-02 05:59:14 | INFO : file 1819_Mozart_K375_Serenadein.npy tested. Cosine sim: 0.7681178485560861 2021-12-02 05:59:27 | INFO : file 2303_Bach_BWV850_WTKI.npy tested. Cosine sim: 0.8012534184237226 2021-12-02 05:59:44 | INFO : file 2382_Beethoven_OP130_StringQuartet.npy tested. Cosine sim: 0.6195368771488109 2021-12-02 05:59:44 | INFO : ### Testing done. ################################################ 2021-12-02 05:59:44 | INFO : # Results for small test set (3 files), full ################### 2021-12-02 05:59:44 | INFO : Mean precision: 0.6905562889252814 2021-12-02 05:59:44 | INFO : Mean recall: 0.735660999319146 2021-12-02 05:59:44 | INFO : Mean f_measure: 0.7122625198514516 2021-12-02 05:59:44 | INFO : Mean cosine_sim: 0.7296360480428733 2021-12-02 05:59:44 | INFO : Mean binary_crossentropy: 0.07121008111238049 2021-12-02 05:59:44 | INFO : Mean euclidean_distance: 0.8998477880522865 2021-12-02 05:59:44 | INFO : Mean binary_accuracy: 0.9800181672440793 2021-12-02 05:59:44 | INFO : Mean soft_accuracy: 0.9689443562439518 2021-12-02 05:59:44 | INFO : Mean accum_energy: 0.5170936167755978 2021-12-02 05:59:44 | INFO : Mean roc_auc_measure: 0.9844185226384671 2021-12-02 05:59:44 | INFO : Mean average_precision_score: 0.7531395570120792 2021-12-02 05:59:44 | INFO : Mean Precision: 0.6905562889252814 2021-12-02 05:59:44 | INFO : Mean Recall: 0.735660999319146 2021-12-02 05:59:44 | INFO : Mean Accuracy: 0.5595458719899898 2021-12-02 05:59:44 | INFO : Mean Substitution Error: 0.11393402577791108 2021-12-02 05:59:44 | INFO : Mean Miss Error: 0.1504049749029429 2021-12-02 05:59:44 | INFO : Mean False Alarm Error: 0.2193744770582137 2021-12-02 05:59:44 | INFO : Mean Total Error: 0.4837134777390677 2021-12-02 05:59:44 | INFO : Mean Chroma Precision: 0.7119789334695498 2021-12-02 05:59:44 | INFO : Mean Chroma Recall: 0.7588825906012951 2021-12-02 05:59:44 | INFO : Mean Chroma Accuracy: 0.5855637301655109 2021-12-02 05:59:44 | INFO : Mean Chroma Substitution Error: 0.09071243449576195 2021-12-02 05:59:44 | INFO : Mean Chroma Miss Error: 0.1504049749029429 2021-12-02 05:59:44 | INFO : Mean Chroma False Alarm Error: 0.2193744770582137 2021-12-02 05:59:44 | INFO : Mean Chroma Total Error: 0.4604918864569186 2021-12-02 05:59:44 | INFO : 2021-12-02 05:59:44 | INFO : Framewise precision: 0.6920416642169878 2021-12-02 05:59:44 | INFO : Framewise recall: 0.7392771407152824 2021-12-02 05:59:44 | INFO : Framewise f_measure: 0.7147723469472824 2021-12-02 05:59:44 | INFO : Framewise cosine_sim: 0.7308597019179313 2021-12-02 05:59:44 | INFO : Framewise binary_crossentropy: 0.07280672929229616 2021-12-02 05:59:44 | INFO : Framewise euclidean_distance: 0.9146477817683731 2021-12-02 05:59:44 | INFO : Framewise binary_accuracy: 0.9794420849035913 2021-12-02 05:59:44 | INFO : Framewise soft_accuracy: 0.9680377847912399 2021-12-02 05:59:44 | INFO : Framewise accum_energy: 0.514714026774997 2021-12-02 05:59:44 | INFO : Framewise roc_auc_measure: 0.9847348175358819 2021-12-02 05:59:44 | INFO : Framewise average_precision_score: 0.7557836142445957 2021-12-02 05:59:44 | INFO : Framewise Precision: 0.6920416642169878 2021-12-02 05:59:44 | INFO : Framewise Recall: 0.7392771407152824 2021-12-02 05:59:44 | INFO : Framewise Accuracy: 0.562001767994541 2021-12-02 05:59:44 | INFO : Framewise Substitution Error: 0.1144266671022402 2021-12-02 05:59:44 | INFO : Framewise Miss Error: 0.14629619218247755 2021-12-02 05:59:44 | INFO : Framewise False Alarm Error: 0.21760473788404242 2021-12-02 05:59:44 | INFO : Framewise Total Error: 0.4783275971687603 2021-12-02 05:59:44 | INFO : Framewise Chroma Precision: 0.7138217622450875 2021-12-02 05:59:44 | INFO : Framewise Chroma Recall: 0.7628746628969295 2021-12-02 05:59:44 | INFO : Framewise Chroma Accuracy: 0.588773934620552 2021-12-02 05:59:44 | INFO : Framewise Chroma Substitution Error: 0.09082914492059302 2021-12-02 05:59:44 | INFO : Framewise Chroma Miss Error: 0.14629619218247755 2021-12-02 05:59:44 | INFO : Framewise Chroma False Alarm Error: 0.21760473788404242 2021-12-02 05:59:44 | INFO : Framewise Chroma Total Error: 0.4547300749871131