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Part-1A: Pre-designed network for multi-label classification  
 

In this part, you will practice to train a neural network both by training from scratch or fine-tuning.  

MP3_P1_Introduction.ipynb in your assignment3_p1_starterkit should provide you with enough instruction to 

start with.  

We are asking you to provide the following results. 

  

1. Simple Classifier 

a. Report test mAP for simple classifier:  

Solution:  

• The test mAP for the simple classifier provided in the classifier.py file  using the SGD with 

momentum   method of optimization and 20 epochs was 0.1468  whereas the average loss on 

the test set was 0.2184.  

• These values are for the default parameters provided in the jupyter notebook. However, I went 

on to fine tune the parameters with learning rates=[0.01,0.001,0.0001] and increased the 

number of epochs to 30 and 40. The best results were observed for learning rate of 0.01 with 

the number of epochs=40. The test mAP for learning rate=   0.1856  whereas the average loss 

on the test set was 0.216.  

• I also  observed that with the Adam optimizer with learning rate of 1e-4 along with  the betas  set 

to (0.9, 0.999), and the epsilon values=1e-08 the test mAP for the simple classifier increased to 

0.2079  and the average loss is 0.2119 . 

 

b. Visualize loss and mAP plots: 

Solution: 

 

 

Shown below is the loss plot and the mAP plot on the PASCAL VOC 2007 dataset optimized with the 

SGD with momentum. All the parameters are the default parameters originally provided. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Shown below is the loss mAP plot on the PASCAL VOC 2007 dataset optimized with the SGD with momentum. 

Here the learning rate is = 0.01 and the number of epochs=40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shown below is the loss mAP plot on the PASCAL VOC 2007 dataset optimized with the Adam optimizer with a 

learning rate  of 1e-4 along with  the betas  set to (0.9, 0.999), and the epsilon values=1e-08 with number of 

epochs set to 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Provide analysis (at least 3  sentences): 

Solution:  

For analysis and comparison purposes I went ahead and changed the optimizer to the Adam method 

with learning rate of 1e-4 along with the betas  set to (0.9, 0.999), and the epsilon values=1e-08 and ran it 

for 20 epochs. The analysis for simple classifier with default values and SGD and the finetuned for the 

simple classifier as provided in the classifer.py file with Adam updates are shown below. 

Analysis of the default classifier with SGD method: In this case we note that the mAP is only 

0.1468 which is on the lower side of the accuracy compared to what we will see later for the AlexNet 

model. I also saw that the validation loss does not decrease by much from the first to last epoch (it 

starts low and ends slightly lower)  while the training loss starts from 0.48 and decreases to below 0.25 

by the last epoch. I also noted that the original learning rate is set to 0.01 which on the higher side. 

This means that using a faster descent algorithm with a lower learning rate might be able to give us 

higher mAP. We also see that both the training and validation mAP keep rising all through the 20 

epochs which means that doing more number of epochs might be helpful but as we see during the 



runtime it is very computationally expensive. This calls for faster optimization methods like Adam 

which I implemented and the plots are shown above. 

Analysis of the default classifier with Adam method: The Adam optimizer, as expected improved 

the performance over the default and fine-tuned hyperparameters (no. of epochs=40). However, the 

performance was still very low with an accuracy of around 0.20 (mAP). 

 

 

 

2. AlexNet from Scratch 

a. Report test mAP for alexnet: 

Solution: 

• The mAP value for the test set from training AlexNet from scratch with the default value of 

learning parameter provided in the jupyter notebook was found to be 0.1057 while the average 

loss on the test set was 0.2313.  

• In question 1, I had shown that the best performance is obtained if the hyperparameters are 

finetuned and the learning rate becomes 0.01 and the number of epochs is set to 40. Using 

these hyperparameters for the AlexNet resulted in a mAP value for the test set to be  0.150 and 

the average loss on the test set was 0.2374.  

• I observed a very poor performance by training AlexNet from scratch and so I went on to 

implement AlexNet with an Adam optimizer with learning rate  of 1e-4 along with  the betas  set to 

(0.9, 0.999), and the epsilon values=1e-08 and the performance improved and the mAP value for 

the test set was found to be 0.2723 while the average loss on the test set was  0.201 for 20 

epochs. 

 

b. Visualize loss and mAP plots: 

 

Shown below is the loss plot and the mAP plot  of the train AlexNet from scratch on the PASCAL VOC 

2007 dataset optimized with the SGD with momentum. All the parameters are the default parameters 

originally provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Shown below is the loss plot and the mAP plot  of the train AlexNet from scratch on the PASCAL VOC 

2007 dataset optimized with the SGD with momentum. All the parameters are the optimally trained 

parameters obtained from experiments in question 1 (learning rate=0.01 and number of epochs=40). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shown below is the loss plot and the mAP plot  of the train AlexNet from scratch on the PASCAL VOC 

2007 dataset optimized with the SGD with momentum. The parameters used here are the for Adam 

updates with learning rate  of 1e-4 along with  the betas  set to (0.9, 0.999), and the epsilon 

values=1e-08. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Pretrained AlexNet 

a. Report test mAP for pretrained Alexnet: 

Solution: 

For the pretrained AlexNet the test mAP was 0.680 while the average loss was 0.179. 

b. Visualize loss and mAP plots. 

Shown below is the loss plot and the mAP plot  of the pretrained AlexNet on the PASCAL VOC 2007 

dataset optimized with the SGD with momentum. All the parameters are the optimally default 

parameters originally provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Provide analysis on differences to training from scratch (at least 3 sentences):  

Solution: 

• It is very clear from the plots and the test mAP reports that the pretrained AlexNet is far 

better than the AlexNet trained from scratch. The pretrained AlexNet increases mAP by 

almost 3.5 times on the test set and the training accuracy is almost perfect.  

• This large difference in performance may be due to accurate “transfer learning” that is 

happening. As we know that the ImageNet dataset has more than 1000 classes and they 

also include the classes contained in the PASCAL VOC 2007 dataset so the training data 

set is kind of  similar to the test dataset and it much larger. This improves performance.  

• We also know that the initial layers of the AlexNet learns the general features of the images 

like edges, curves, bends etc. which is also relevant to the PASCAL data set. 

  



 

Part-1B: Self designed network for multi-label classification 
 

MP3_P1_Develop_Classifier in your assignment3_p1_starterkit should provide you with enough 

instruction to start with. You upload your output of your self-designed network to kaggle. 

 

Here is the detailed structure of my NN that I built on the top of the AlexNet Structure: 

 
Classifier( 

  (features): Sequential( 

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)) 

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) 

(2): ReLU(inplace=True) 

(3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

(4): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 

(5): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) 

(6): ReLU(inplace=True) 

(7): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

(8): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

(9): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) 

(10): ReLU(inplace=True) 

(11): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) 

(13): ReLU(inplace=True) 

(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

(15): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) 

(16): ReLU(inplace=True) 

(17): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

) 

(avgpool): AdaptiveAvgPool2d(output_size=(6, 6)) 

(classifier): Sequential( 

(0): Dropout(p=0.5, inplace=False) 

(1): Linear(in_features=9216, out_features=4096, bias=True) 

(2): ReLU(inplace=True) 

(3): Dropout(p=0.5, inplace=False) 

(4): Linear(in_features=4096, out_features=4096, bias=True) 

(5): ReLU(inplace=True) 

(6): Linear(in_features=4096, out_features=21, bias=True) 

) 

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The output structure of my classifier is (where -1 stands for variable batch size): 

 

---------------------------------------------------------------- 

        Layer (type)               Output Shape         Param # 

================================================================ 

            Conv2d-1           [-1, 64, 56, 56]          23,296 

       BatchNorm2d-2           [-1, 64, 56, 56]             128 

              ReLU-3           [-1, 64, 56, 56]               0 

         MaxPool2d-4           [-1, 64, 27, 27]               0 

            Conv2d-5          [-1, 192, 27, 27]         307,392 

       BatchNorm2d-6          [-1, 192, 27, 27]             384 

              ReLU-7          [-1, 192, 27, 27]               0 

         MaxPool2d-8          [-1, 192, 13, 13]               0 

            Conv2d-9          [-1, 384, 13, 13]         663,936 

      BatchNorm2d-10          [-1, 384, 13, 13]             768 

             ReLU-11          [-1, 384, 13, 13]               0 

           Conv2d-12          [-1, 256, 13, 13]         884,992 

      BatchNorm2d-13          [-1, 256, 13, 13]             512 

             ReLU-14          [-1, 256, 13, 13]               0 

           Conv2d-15          [-1, 256, 13, 13]         590,080 

      BatchNorm2d-16          [-1, 256, 13, 13]             512 

             ReLU-17          [-1, 256, 13, 13]               0 

        MaxPool2d-18            [-1, 256, 6, 6]               0 

AdaptiveAvgPool2d-19            [-1, 256, 6, 6]               0 

          Dropout-20                 [-1, 9216]               0 

           Linear-21                 [-1, 4096]      37,752,832 

             ReLU-22                 [-1, 4096]               0 

          Dropout-23                 [-1, 4096]               0 

           Linear-24                 [-1, 4096]      16,781,312 

             ReLU-25                 [-1, 4096]               0 

           Linear-26                   [-1, 21]          86,037 

================================================================ 

Total params: 57,092,181 

Trainable params: 57,092,181 

Non-trainable params: 0 

---------------------------------------------------------------- 

Input size (MB): 0.59 

Forward/backward pass size (MB): 12.23 

Params size (MB): 217.79 

Estimated Total Size (MB): 230.61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Did you upload final CSV file on Kaggle: Yes/No 

1. My best mAP on Kaggle: 

  Yes, I uploaded my  (1-mAP)= 0.58920 score to Kaggle. The plots below show the loss and training 

accuracy of my NN as a function of no. of epochs. A total of 55 epochs were used. 

 

2. Factors which helped improve my model 

a. Data augmentation (for detailed explanation of all factors please see below) 

b. Adding Batch Normalization 

c. Using Adam optimizer  

d. Adding more convolutional layers  

e. Adding 1x1 convolution layers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3. Table for final architecture (replace below with your best architecture design): 

Layer No. Layer Type Kernel size 
(for conv layers) 

Input | Output 
dimension 

Input | Output 
Channels 

(for conv layers) 

1 Conv2d 11 227x227 | 56 x56 3 | 64 

2 BatchNorm2d - 56 x56 | 56 x56 - 

3 ReLU 2 56 x 56 | 56 x56 - 

4 MaxPool2d 3 27x 27 | 27x 27  

5 Conv2d 5 27x 27 | 27x 27 64 | 192 

6 BatchNorm2d 2 27x 27 | 27x 27 - 

7 ReLU - 27x 27 | 27x 27 - 

8 MaxPool2d 3     13x13 | 13x13 - 

9 Conv2d 3 13x13 | 13x13 192| 384 

10 BatchNorm2d- 5 13x13| 13x13 - 

11 ReLU - 13x13| 13x13 - 

12 Conv2d 3 13x13| 13x13 384 | 256 

13 BatchNorm2d - 13x13 | 13x13 - 

14 ReLU - 13x13 | 13x13 - 

15 Conv2d 3 13x13| 13x13 256 | 256 

16 BatchNorm2d - 13x13| 13x13 - 

17 ReLU - 13x13| 13x13 - 

18 MaxPool2d 3          6x6| 6x6 - 

19 AdaptiveAvgPool2d - 6x6| 6x6 - 

20 Dropout -   256x6x6| 9216 - 

21 Linear -         9216| 4096 - 

22 ReLU - 4096| 4096 - 

23 Dropout - 4096| 4096 - 

24 Linear - 4096| 4096 - 

25 ReLU - 4096| 4096 - 

26 Linear -       4096| 21 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The initial network provided to you can be considered as the BaseNet. A very important part of deep 

learning is understanding the ablation studies of various networks. So we would like you to do a few 

experiments. Note, this doesn’t need to be very exhaustive and can be in a cumulative manner in an 

order you might prefer. Fill in the following table :  

 

The initial network that I used was AlexNet and its best mAP and subsequent addition along with their 

respective mAPs are listed below (all the experiments below were run for 20 epochs with the Adam optimizer 

instead of the optimum 55 epochs to save Colab time.) 

 

Serial 
# 

Model architecture Best mAP on 
test set 

1 BaseNet (SGD) 0.15 

2 BaseNet (Adam) 0.27 
 

3 BaseNet (Adam) + data agumentation 0.28 
 

4 BaseNet + a + data agumentation 
 
Where a= one BatchNorm2d 

0.30 

5 BaseNet + a + b + data agumentation 
 
Where b= 2 additional BatchNorm2d 

0.32 

6 BaseNet + a + b+c + data agumentation 
 
Where c= 2 additional BatchNorm2d 

0.36 

7 BaseNet + a + b+c+d+ data agumentation 
 
Where d=  two layers of Conv2d(384, 384, 
kernel_size=3, padding=1) followed by  
one layer of  MaxPool2d(kernel_size=3, 
stride=2) 

0.35 

8 BaseNet + a + b+c+d+e+ data agumentation 
 
Where e=  three layers of Conv2d(256, 256, 
kernel_size=3, padding=1) followed by  
one layer of  MaxPool2d(kernel_size=3, 
stride=2) 

0.32 

 

 

 

 

 

 

 

 

 



 

Make some analysis on why and how you think certain changes helped or didn’t help: 

a. Data augmentation – this is very helpful in increasing the amount of data to train the 

parameters. More the number of parameters the more is the data required to train them to get 

higher mAP on testset.  I used the following inbuilt data augmentation in Pytorch 

 

  transforms.ColorJitter(hue=.05, saturation=.05), 

            transforms.RandomHorizontalFlip(), 

            transforms.RandomRotation(20, resample=PIL.Image.BILINEAR), 

            transforms.CenterCrop(227), 

 

b. Adding Batch Normalization – I added 5 batch normalization layers in successively and saw a 

gradual increase in the mAP score in the test set. Batch normalization of the input layer by re-

centering and re-scaling makes the NN faster and more stable. 

 

c. Using Adam optimizer -- Using the Adam optimizer  helped in faster convergence and achieve 

higher rate of learning. The algorithms leverage the power of adaptive learning rates methods to 

find individual learning rates for each parameter. 

 

d. Adding more convolutional layers – helped in adding more number of parameters to learn. 

Using data augmentation (provides additional data to train) along with more convolution layers 

can help the model learn better. However, I also noticed that after certain threshold adding more 

convolution layers decreased the mAP on test set. This is because the number of parameters 

increased but there was not enough data to train so this resulted in under fitting. 

 

e. Adding 1x1 convolution layers – as mentioned above adding convolution layers helps 

increase the network capacity by increasing the number of trainable parameters and  are used 

for reducing dimensionality. 

 

  

 


