HW2—Game Engine

Introduction: Konane

Also known as Hawaiian Checkers, Konane is a strategy game played between
two players. Players alternate taking turns, capturing their opponent’s pieces by
jumping their own pieces over them (if you're familiar with checkers, there is a
strong structural analogy to be made here, except the jumping is not diagonal
but orthogonal, and while multiple jumps are allowed in a turn, all jumps have
to occur in the same direction). The first player to be unable to capture any of
their opponent’s pieces loses.

The full rules can be read here or here, and here’s a nice video explaining the
rules simply as well.

Here’s a (rather terse) version of the rules, though:

1. Black typically starts. They take one of their pieces off the board. Now,
the piece shown below as taken off is actually not the one that’s taken off.
If we imagine a (row, column) coordinate system for the pieces such that
the top-left white piece is in position (1, 1), and the top-right black piece
is in position (1, 8), then the very first move of the game sees a black piece
taken off from the two right in the middle of the board—so, (4, 5) and (5,
4)—or from such a pair in any of the corners of the board. Please make
sure your implementation honors that rule.

2. White then takes one of their pieces off the board from a space orthogonally
adjacent to the piece that black removed.

3. Each player then alternately moves their pieces in capturing moves. A
capturing move has a stone move in an orthogonal direction, hopping over
an opponent’s piece. Multiple captures may be made in a turn, as long as
the stone moves in the same direction and captures at least one piece.

4. The first player to be unable to capture a piece loses. :(

Play the game

In this homework, you’ll be implementing Minimax and Alpha-Beta Pruning for
an agent playing Konane. Wait, isn’t Alpha-Beta Pruning a variant of Minimax?
Yes, it is. It’s just that here we’re using Minimax and Alpha-Beta
Pruning to respectively refer to Minimax WITHOUT Alpha-Beta
Pruning and Minimax WITH Alpha-Beta Pruning.

But first, you should get practically familiar with how the game is played, not
just be familiar with the rules of the game. To do this, play the game with the
provided code. You’ve been distributed a codebase which includes an interface
for playing the game in a variety of modes. Notably, you don’t need to
actually make the game of Konane—just to make an agent that plays
it.

https://en.wikipedia.org/wiki/Konane
https://en.wikipedia.org/wiki/Konane#Rules_and_gameplay
http://www.konanebrothers.com/How-to-Play.html
https://www.youtube.com/watch?v=09AAT29uaGE

010900000 ®
90000060
O|®OL1O/®O|®
900000 eO0
0191010000 ®
90000060
010900000 ®
90000060

010900000 ®
90000060

Oled Ve e
JCl[e[Jiel Je

01910/9/0/0/0|®
90000060

010900000 ®
9000006

010900000 ®
90000060
O1® 0 [@0O|®

Q00060 e
0000000 e

90000060
010900000 ®
90000060

Figure 4: Konane Board

Playing the game interactively may only work on Linux and Mac. However, this
is not required for completing the assignment and is only provided to help you
get familiar with the game (and for your entertainment).

Run the following from your terminal:
python main.py $P1 $P2

By default, main.py will setup a human player versus a random player on a
board that is 10x10. During Human mode, move the cursor with the ARROW
keys and select the tile with SPACE. When it is a computer’s turn, advance the
game with the SPACE key. To see the game board in your terminal, you need a
minimum terminal size of (rows + 2) x (columns + 2) to see the whole board.
To exit the game, kill the process in your terminal (e.g., with CTRL-c).

You can change the game settings by passing in values to python main.py. You
need to pass in exactly two arguments. Valid arguments are as follows:

¢ H (Human)—manually select the tile to move and to where you will move
it. Legal moves will be executed.

o D (Deterministic)—the agent will select the first move that it finds (the
leftmost option in the tree) during its traversal.

o R (Random)—the agent will pick a random move.

e M (Minimax)—the agent will pick a move using the Minimax algorithm.
You will be prompted for a maximum search depth.

o A (Alpha-Beta pruning)—the agent will pick a move using A-B pruning.
You will be prompted for a maximum search depth.

Passing in an invalid number or type of arguments will result in the system
defaulting to a human vs. a random player.

Your task

Now that you know how the game is played, it is time to make your own
intelligent players of the game. You will do this my implementing one player
that use Minimax and another player that uses Alpha-Beta Pruning.

For this homework, make sure that you are running Python 3.6 -
3.7. These versions ensure that the legal move ordering is the same as what is
expected by the tests. Programming is hard. :(

Part 1: Minimax

Minimax is an algorithm for determing the best move in an adverserial game. It
seeks to minimize the maximum loss posed by the opponent’s strategy. Minimax
is typically employed in competitive, discrete-, and finite-space games with
abstracted time and perfect information.

You will complete the implementation of MinimaxPlayer in player.py. In your
implementation, you need to be aware of 2 things: the maximum depth and the

evaluation function. The maximum depth is provided to the constructor of the
MinimaxPlayer and defines the maximum number of plies that the player will
simulate when choosing a move. The evaluation function defines a score for a
terminal node in the search. Use the function hl defined in the parent class
Player as your evaluation function.

Please leave the selectInitialX and selectInitial0 methods alone; all of
the editing that you need to do takes place in getMove. As always, feel free to
add any methods/classes you feel that you need, provided that you change only

player.py.

Part 2: Alpha-Beta Pruning

You may notice that Minimax starts to get terribly slow when you set your
maximum search depth to values above, say, 4. This makes perfect sense when
you think about the fact that the total number of nodes in your game tree is the
branching factor to the power of the search depth. For comparatively “bushy”
games (e.g., chess, Go, etc.) the branching factor is prohibitively large, which is
why agents that play these games use cleverer algorithms to choose what move
to take next.

One such cleverer algorithm (although still not clever enough to do well at games
like Go) is a modification of Minimax known as Alpha-Beta Pruning. They are,
at their core, the same algorithm. The distinction is that A-B Pruning ignores
subtrees that are provably worse than any that it has considered so far. This
drastically reduces the runtime of the algorithm.* Since A-B Pruning is a variant
of Minimax, you aren’t really writing a new algorithm; rather, you're taking
your implementation of Minimax and making it a little smarter.

* Strictly speaking, it doesn’t change the upper bound on the algorithm’s runtime,
since in the worst-case one must still search the entire tree. In practice, however,
the performance difference is very noticeable.

As with Minimax, your task is to complete the implementation of
AlphaBetaPlayer. You will need to again consider the maximum depth
and the evaluation function.

Testing Your Work

You can manually test your work by playing against your agent yourself, or by
having the agents play against each other. We’ve also included a few tests for
kicking the tires on your implementations of Minimax and Alpha-Beta Pruning.
You can find those tests in test.py, and you can run them with:

python test.py

In designing your own tests, consider different board sizes (always square), depths
for searching, and time to execute. The timeouts provided in test.py should

be generous, so see if you can do much better. It is worth noting that the tests
can take upwards of five minutes to complete, so don’t freak out. :)

To help with debugging and generating new tests, each play of the game auto-
matically records all moves to game.log. The log can be helpful for comparing
the sequence of moves in your implementation and in the implementation of
others. For example, we provide a gamel.log that is the correct sequence of
moves for testl.

The logs can also be used to create specific test scenarios. The logs can be
used to play the game. For examples, testls is identical to testl except it is
completely a scripted replay using gamel.log. You can truncate existing log
files to automatically replay a part of a game, perhaps advancing the game to
where you have a possible bug. Alternatively, you can create your own log files
manually, creating completely new scenarios to test.

Notes
On the codebase:

¢ player.py—this is the file you’ll be editing. Note that MinimaxPlayer
and AlphaBetaPlayer are both diked out and replaced with a determinstic
player instead.

e main.py—to play the game (in Human mode) or to watch your agents
duke it out, run python main.py. Use the arrow keys and the spacebar
to select your actions.

e test.py—run tests with python test.py.

o game_manager.py—holds the board representation and handles turn-
taking.

e game_rules.py—code determining available moves, their legality, etc.

¢ You can change the type of player, the board size, etc. in main.py

On A-B Pruning:

o It’s worth noting that Alpha-Beta Pruning produces answers that look more
or less the same as vanilla Minimax (they should be identical, given that
your search pattern hasn’t changed), but Alpha-Beta will run substantially
faster. The grading rig will use timeouts in its tests, so ordinary Minimax
won’t be fast enough to get you full credit for this part of the homework.

o To see the difference between Minimax and Alpha-Beta, just run the game
at progressively deeper search depths. You won’t see much of a difference
at a depth of 2, but the difference between the two at depth 5 is extreme.

On additional fun:

e Try out a better evaluation function. Define an h2, and see how it does.
Can it do better than the hl evaluation function? Note that we will use
h1 for grading, so be sure to have your Minimax and Alpha-Beta players
set up to use hil in your final submission.

¢ Can you beat Alpha-Beta? Use main.py to play against the computer and
see if you can win.

	HW2—Game Engine
	Introduction: Konane
	Play the game
	Your task
	Part 1: Minimax
	Part 2: Alpha-Beta Pruning
	Testing Your Work

	Notes

