package byow.Core; import java.util.Random; /** * A library of static methods to generate pseudo-random numbers from * different distributions (bernoulli, uniform, gaussian, discrete, * and exponential). Also includes methods for shuffling an array and * other randomness related stuff you might want to do. Feel free to * modify this file. *

* Adapted from https://introcs.cs.princeton.edu/java/22library/StdRandom.java.html * */ public class RandomUtils { /** * Returns a random real number uniformly in [0, 1). * * @return a random real number uniformly in [0, 1) */ public static double uniform(Random random) { return random.nextDouble(); } /** * Returns a random integer uniformly in [0, n). * * @param n number of possible integers * @return a random integer uniformly between 0 (inclusive) and {@code n} (exclusive) * @throws IllegalArgumentException if {@code n <= 0} */ public static int uniform(Random random, int n) { if (n <= 0) { throw new IllegalArgumentException("argument must be positive: " + n); } return random.nextInt(n); } /** * Returns a random long integer uniformly in [0, n). * * @param n number of possible {@code long} integers * @return a random long integer uniformly between 0 (inclusive) and {@code n} (exclusive) * @throws IllegalArgumentException if {@code n <= 0} */ public static long uniform(Random random, long n) { if (n <= 0L) { throw new IllegalArgumentException("argument must be positive: " + n); } // https://docs.oracle.com/javase/8/docs/api/java/util/Random.html#longs-long-long-long- long r = random.nextLong(); long m = n - 1; // power of two if ((n & m) == 0L) { return r & m; } // reject over-represented candidates long u = r >>> 1; while (u + m - (r = u % n) < 0L) { u = random.nextLong() >>> 1; } return r; } /////////////////////////////////////////////////////////////////////////// // STATIC METHODS BELOW RELY ON JAVA.UTIL.RANDOM ONLY INDIRECTLY VIA // THE STATIC METHODS ABOVE. /////////////////////////////////////////////////////////////////////////// /** * Returns a random integer uniformly in [a, b). * * @param a the left endpoint * @param b the right endpoint * @return a random integer uniformly in [a, b) * @throws IllegalArgumentException if {@code b <= a} * @throws IllegalArgumentException if {@code b - a >= Integer.MAX_VALUE} */ public static int uniform(Random random, int a, int b) { if ((b <= a) || ((long) b - a >= Integer.MAX_VALUE)) { throw new IllegalArgumentException("invalid range: [" + a + ", " + b + ")"); } return a + uniform(random, b - a); } /** * Returns a random real number uniformly in [a, b). * * @param a the left endpoint * @param b the right endpoint * @return a random real number uniformly in [a, b) * @throws IllegalArgumentException unless {@code a < b} */ public static double uniform(Random random, double a, double b) { if (!(a < b)) { throw new IllegalArgumentException("invalid range: [" + a + ", " + b + ")"); } return a + uniform(random) * (b - a); } /** * Returns a random boolean from a Bernoulli distribution with success * probability p. * * @param p the probability of returning {@code true} * @return {@code true} with probability {@code p} and * {@code false} with probability {@code p} * @throws IllegalArgumentException unless {@code 0} ≤ {@code p} ≤ {@code 1.0} */ public static boolean bernoulli(Random random, double p) { if (!(p >= 0.0 && p <= 1.0)) { throw new IllegalArgumentException("probability p must be between 0.0 and 1.0: " + p); } return uniform(random) < p; } /** * Returns a random boolean from a Bernoulli distribution with success * probability 1/2. * * @return {@code true} with probability 1/2 and * {@code false} with probability 1/2 */ public static boolean bernoulli(Random random) { return bernoulli(random, 0.5); } /** * Returns a random real number from a standard Gaussian distribution. * * @return a random real number from a standard Gaussian distribution * (mean 0 and standard deviation 1). */ public static double gaussian(Random random) { // use the polar form of the Box-Muller transform double r, x, y; do { x = uniform(random, -1.0, 1.0); y = uniform(random, -1.0, 1.0); r = x * x + y * y; } while (r >= 1 || r == 0); return x * Math.sqrt(-2 * Math.log(r) / r); // Remark: y * Math.sqrt(-2 * Math.log(r) / r) // is an independent random gaussian } /** * Returns a random real number from a Gaussian distribution with mean μ * and standard deviation σ. * * @param mu the mean * @param sigma the standard deviation * @return a real number distributed according to the Gaussian distribution * with mean {@code mu} and standard deviation {@code sigma} */ public static double gaussian(Random random, double mu, double sigma) { return mu + sigma * gaussian(random); } /** * Returns a random integer from a geometric distribution with success * probability p. * * @param p the parameter of the geometric distribution * @return a random integer from a geometric distribution with success * probability {@code p}; or {@code Integer.MAX_VALUE} if * {@code p} is (nearly) equal to {@code 1.0}. * @throws IllegalArgumentException unless {@code p >= 0.0} and {@code p <= 1.0} */ public static int geometric(Random random, double p) { if (!(p >= 0.0 && p <= 1.0)) { throw new IllegalArgumentException("probability p must be between 0.0 and 1.0: " + p); } // using algorithm given by Knuth return (int) Math.ceil(Math.log(uniform(random)) / Math.log(1.0 - p)); } /** * Returns a random integer from a Poisson distribution with mean λ. * * @param lambda the mean of the Poisson distribution * @return a random integer from a Poisson distribution with mean {@code lambda} * @throws IllegalArgumentException unless {@code lambda > 0.0} and not infinite */ public static int poisson(Random random, double lambda) { if (!(lambda > 0.0)) { throw new IllegalArgumentException("lambda must be positive: " + lambda); } if (Double.isInfinite(lambda)) { throw new IllegalArgumentException("lambda must not be infinite: " + lambda); } // using algorithm given by Knuth // see http://en.wikipedia.org/wiki/Poisson_distribution int k = 0; double p = 1.0; double expLambda = Math.exp(-lambda); do { k++; p *= uniform(random); } while (p >= expLambda); return k - 1; } /** * Returns a random real number from the standard Pareto distribution. * * @return a random real number from the standard Pareto distribution */ public static double pareto(Random random) { return pareto(random, 1.0); } /** * Returns a random real number from a Pareto distribution with * shape parameter α. * * @param alpha shape parameter * @return a random real number from a Pareto distribution with shape * parameter {@code alpha} * @throws IllegalArgumentException unless {@code alpha > 0.0} */ public static double pareto(Random random, double alpha) { if (!(alpha > 0.0)) { throw new IllegalArgumentException("alpha must be positive: " + alpha); } return Math.pow(1 - uniform(random), -1.0 / alpha) - 1.0; } /** * Returns a random real number from the Cauchy distribution. * * @return a random real number from the Cauchy distribution. */ public static double cauchy(Random random) { return Math.tan(Math.PI * (uniform(random) - 0.5)); } /** * Returns a random integer from the specified discrete distribution. * * @param probabilities the probability of occurrence of each integer * @return a random integer from a discrete distribution: * {@code i} with probability {@code probabilities[i]} * @throws IllegalArgumentException if {@code probabilities} is {@code null} * @throws IllegalArgumentException if sum of array entries is not (very nearly) equal to 1.0 * @throws IllegalArgumentException unless {@code probabilities[i] >= 0.0} for each index i */ public static int discrete(Random random, double[] probabilities) { if (probabilities == null) { throw new IllegalArgumentException("argument array is null"); } double eps = 1E-14; double sum = 0.0; for (int i = 0; i < probabilities.length; i++) { if (!(probabilities[i] >= 0.0)) { throw new IllegalArgumentException("array entry " + i + " must be nonnegative: " + probabilities[i]); } sum += probabilities[i]; } if (sum > 1.0 + eps || sum < 1.0 - eps) { throw new IllegalArgumentException("sum of array entries does not approximately " + "equal 1.0: " + sum); } // the for loop may not return a value when both r is (nearly) 1.0 and when the // cumulative sum is less than 1.0 (as a result of floating-point roundoff error) while (true) { double r = uniform(random); sum = 0.0; for (int i = 0; i < probabilities.length; i++) { sum = sum + probabilities[i]; if (sum > r) { return i; } } } } /** * Returns a random integer from the specified discrete distribution. * * @param frequencies the frequency of occurrence of each integer * @return a random integer from a discrete distribution: * i with probability proportional to frequencies[i] * @throws IllegalArgumentException if frequencies is null * @throws IllegalArgumentException if all array entries are 0 * @throws IllegalArgumentException if frequencies[i] is negative for any index i * @throws IllegalArgumentException if sum of frequencies exceeds Integer.MAX_VALUE (2^31 - 1) */ public static int discrete(Random random, int[] frequencies) { if (frequencies == null) { throw new IllegalArgumentException("argument array is null"); } long sum = 0; for (int i = 0; i < frequencies.length; i++) { if (frequencies[i] < 0) { throw new IllegalArgumentException("array entry " + i + " must be nonnegative: " + frequencies[i]); } sum += frequencies[i]; } if (sum == 0) { throw new IllegalArgumentException("at least one array entry must be positive"); } if (sum >= Integer.MAX_VALUE) { throw new IllegalArgumentException("sum of frequencies overflows an int"); } // pick index i with probabilitity proportional to frequency double r = uniform(random, (int) sum); sum = 0; for (int i = 0; i < frequencies.length; i++) { sum += frequencies[i]; if (sum > r) { return i; } } // can't reach here assert false; return -1; } /** * Returns a random real number from an exponential distribution * with rate λ. * * @param lambda the rate of the exponential distribution * @return a random real number from an exponential distribution with * rate {@code lambda} * @throws IllegalArgumentException unless {@code lambda > 0.0} */ public static double exp(Random random, double lambda) { if (!(lambda > 0.0)) { throw new IllegalArgumentException("lambda must be positive: " + lambda); } return -Math.log(1 - uniform(random)) / lambda; } /** * Rearranges the elements of the specified array in uniformly random order. * * @param a the array to shuffle * @throws IllegalArgumentException if {@code a} is {@code null} */ public static void shuffle(Random random, Object[] a) { validateNotNull(a); int n = a.length; for (int i = 0; i < n; i++) { int r = i + uniform(random, n - i); // between i and n-1 Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearranges the elements of the specified array in uniformly random order. * * @param a the array to shuffle * @throws IllegalArgumentException if {@code a} is {@code null} */ public static void shuffle(Random random, double[] a) { validateNotNull(a); int n = a.length; for (int i = 0; i < n; i++) { int r = i + uniform(random, n - i); // between i and n-1 double temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearranges the elements of the specified array in uniformly random order. * * @param a the array to shuffle * @throws IllegalArgumentException if {@code a} is {@code null} */ public static void shuffle(Random random, int[] a) { validateNotNull(a); int n = a.length; for (int i = 0; i < n; i++) { int r = i + uniform(random, n - i); // between i and n-1 int temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearranges the elements of the specified array in uniformly random order. * * @param a the array to shuffle * @throws IllegalArgumentException if {@code a} is {@code null} */ public static void shuffle(Random random, char[] a) { validateNotNull(a); int n = a.length; for (int i = 0; i < n; i++) { int r = i + uniform(random, n - i); // between i and n-1 char temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearranges the elements of the specified subarray in uniformly random order. * * @param a the array to shuffle * @param lo the left endpoint (inclusive) * @param hi the right endpoint (exclusive) * @throws IllegalArgumentException if {@code a} is {@code null} * @throws IllegalArgumentException unless {@code (0 <= lo) && (lo < hi) && (hi <= a.length)} */ public static void shuffle(Random random, Object[] a, int lo, int hi) { validateNotNull(a); validateSubarrayIndices(lo, hi, a.length); for (int i = lo; i < hi; i++) { int r = i + uniform(random, hi - i); // between i and hi-1 Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearranges the elements of the specified subarray in uniformly random order. * * @param a the array to shuffle * @param lo the left endpoint (inclusive) * @param hi the right endpoint (exclusive) * @throws IllegalArgumentException if {@code a} is {@code null} * @throws IllegalArgumentException unless {@code (0 <= lo) && (lo < hi) && (hi <= a.length)} */ public static void shuffle(Random random, double[] a, int lo, int hi) { validateNotNull(a); validateSubarrayIndices(lo, hi, a.length); for (int i = lo; i < hi; i++) { int r = i + uniform(random, hi - i); // between i and hi-1 double temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearranges the elements of the specified subarray in uniformly random order. * * @param a the array to shuffle * @param lo the left endpoint (inclusive) * @param hi the right endpoint (exclusive) * @throws IllegalArgumentException if {@code a} is {@code null} * @throws IllegalArgumentException unless {@code (0 <= lo) && (lo < hi) && (hi <= a.length)} */ public static void shuffle(Random random, int[] a, int lo, int hi) { validateNotNull(a); validateSubarrayIndices(lo, hi, a.length); for (int i = lo; i < hi; i++) { int r = i + uniform(random, hi - i); // between i and hi-1 int temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Returns a uniformly random permutation of n elements. * * @param n number of elements * @return an array of length {@code n} that is a uniformly random permutation * of {@code 0}, {@code 1}, ..., {@code n-1} * @throws IllegalArgumentException if {@code n} is negative */ public static int[] permutation(Random random, int n) { if (n < 0) { throw new IllegalArgumentException("argument is negative"); } int[] perm = new int[n]; for (int i = 0; i < n; i++) { perm[i] = i; } shuffle(random, perm); return perm; } /** * Returns a uniformly random permutation of k of n elements. * * @param n number of elements * @param k number of elements to select * @return an array of length {@code k} that is a uniformly random permutation * of {@code k} of the elements from {@code 0}, {@code 1}, ..., {@code n-1} * @throws IllegalArgumentException if {@code n} is negative * @throws IllegalArgumentException unless {@code 0 <= k <= n} */ public static int[] permutation(Random random, int n, int k) { if (n < 0) { throw new IllegalArgumentException("argument is negative"); } if (k < 0 || k > n) { throw new IllegalArgumentException("k must be between 0 and n"); } int[] perm = new int[k]; for (int i = 0; i < k; i++) { int r = uniform(random, i + 1); // between 0 and i perm[i] = perm[r]; perm[r] = i; } for (int i = k; i < n; i++) { int r = uniform(random, i + 1); // between 0 and i if (r < k) { perm[r] = i; } } return perm; } // throw an IllegalArgumentException if x is null // (x can be of type Object[], double[], int[], ...) private static void validateNotNull(Object x) { if (x == null) { throw new IllegalArgumentException("argument is null"); } } // throw an exception unless 0 <= lo <= hi <= length private static void validateSubarrayIndices(int lo, int hi, int length) { if (lo < 0 || hi > length || lo > hi) { throw new IllegalArgumentException("subarray indices out of bounds: [" + lo + ", " + hi + ")"); } } }