test = { 'name': 'Problem 7', 'points': 6, 'suites': [ { 'cases': [ { 'answer': 'fb82a22c057637e022eb7ddae6aaea79', 'choices': [ 'the restaurants in restaurants', 'the names of restaurants in restaurants', 'the extracted values for each restaurant in restaurants', 'the restaurants reviewed by user' ], 'hidden': False, 'locked': True, 'question': 'What does the list xs represent?' }, { 'answer': '1505923812f70bfa339a40321753647e', 'choices': [ 'the ratings for the restaurants reviewed by user', 'the ratings for the restaurants in restaurants', 'the names for the restaurants reviewed by user', 'the names for the restaurants in restaurants' ], 'hidden': False, 'locked': True, 'question': 'What does the list ys represent?' } ], 'scored': False, 'type': 'concept' }, { 'cases': [ { 'code': r""" >>> user = make_user('John D.', [ ... make_review('A', 1), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 2.5), ... ]) >>> restaurant = make_restaurant('New', [-10, 2], [], 2, [ ... make_review('New', 4), ... ]) >>> cluster = [ ... make_restaurant('B', [4, 2], [], 1, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 2) ... ]), ... make_restaurant('D', [4, 2], [], 3.5, [ ... make_review('D', 2.5), ... make_review('D', 3), ... ]), ... ] >>> pred, r_squared = find_predictor(user, cluster, restaurant_price) >>> round(pred(restaurant), 5) 4.0 >>> round(r_squared, 5) 1.0 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('John D.', [ ... make_review('A', 1), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 2.5), ... ]) >>> restaurant = make_restaurant('New', [-10, 2], [], 2, [ ... make_review('New', 4), ... ]) >>> cluster = [ ... make_restaurant('B', [4, 2], [], 1, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 2) ... ]), ... make_restaurant('D', [4, 2], [], 3.5, [ ... make_review('D', 2.5), ... make_review('D', 3), ... ]), ... ] >>> pred, r_squared = find_predictor(user, cluster, restaurant_mean_rating) >>> round(pred(restaurant), 5) 3.9359 >>> round(r_squared, 5) 0.99256 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('John D.', [ ... make_review('A', 1), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 2.5), ... ]) >>> restaurant = make_restaurant('New', [-10, 2], [], 2, [ ... make_review('New', 4), ... ]) >>> cluster = [ ... make_restaurant('B', [4, 2], [], 1, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 2) ... ]), ... make_restaurant('D', [4, 2], [], 3.5, [ ... make_review('D', 2.5), ... make_review('D', 3), ... ]), ... ] >>> pred, r_squared = find_predictor(user, cluster, restaurant_num_ratings) >>> round(pred(restaurant), 5) 3.5 >>> round(r_squared, 5) 0.12903 """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> import tests.test_functions as test >>> import recommend >>> test.swap_implementations(recommend) >>> from recommend import * """, 'teardown': r""" >>> test.restore_implementations(recommend) """, 'type': 'doctest' } ] }