{ "cells": [ { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "import json\n", "import pandas as pd\n", "\n", "eval_path = Path.cwd() / 'eval'\n", "dfs = []\n", "for i in range(1,4):\n", " file_path = eval_path / f'predictions_eval_v{i}_T5_large.json'\n", " with open(file_path, 'r') as f_in:\n", " data = json.load(f_in)\n", " df = pd.DataFrame.from_records(data, columns=['db_id','question', 'query', 'prediction'])\n", " df['prediction'] = df.apply(lambda x: x['prediction'].split('|')[-1].strip(), axis=1)\n", " dfs.append(df)\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_341950/2288969719.py:5: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", " writer.save()\n" ] } ], "source": [ "xlsx_path = eval_path / 't5_large_zero_shot_eval.xlsx'\n", "with pd.ExcelWriter(xlsx_path, engine='openpyxl') as writer:\n", " for df in dfs:\n", " df.to_excel(writer, sheet_name=df['db_id'][0])\n", " writer.save()\n" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }