plot_correlation_PCscore_isoExpr <- function(res_isomas,iso,nfeat.pos = 50, nfeat.neg = 50,PCs="PC_2"){ ###-----correlation between pc score and isoform expression library(ggplot2) data.heat = plot_isomas_heatmap(iso,dims = PCs, nfeat.pos = nfeat.pos, nfeat.neg = nfeat.neg, anno_row = F, anno_col = T, anno_col_keys = c("Mutation"), anno_legend = T, get.data = T,fs = 20, show_rwnms = T, iso_to_gene = NULL, show_gname = F, #remember not to show gene name title=NA) pcscore = data.heat$annotation_col[,PCs] #LUAD: Named num [1:517] names(pcscore) = rownames(data.heat$annotation_col) isoExpr = data.heat$scale.data.select #100 X 517 if(all(colnames(isoExpr) %in% names(pcscore))){ pcscore = pcscore[colnames(isoExpr)] }else{ stop("names of PCscores and isoExpr not consistent.") } isoExpr = data.frame(t(isoExpr)) #rows: samples; columns:isoforms, 517 X 100 res.cor.list = lapply(seq(ncol(isoExpr)),function(j){ temp = cor.test(pcscore,isoExpr[,j],method = 'spearman') return(c(temp$estimate,temp$p.value)) }) names(res.cor.list) = colnames(isoExpr) res.cor.df = do.call(rbind,res.cor.list) colnames(res.cor.df) = c('Spearman.rho','P.value') res.cor.df = data.frame(res.cor.df) #100 X 2 res.cor.df$Log10Pvalue = -log10(res.cor.df$P.value) res.cor.df$Color = 'black' res.cor.df$Color[res.cor.df$Spearman.rho>0] = "#FF0000" res.cor.df$Color[res.cor.df$Spearman.rho<0] = "#32CD32" df = res.cor.df fs = 24 ggplot(df,aes(x=Spearman.rho,y=Log10Pvalue))+ geom_point(color=df$Color,size=2)+ labs(x=expression(paste('Spearman correlation (',rho,')')), y='-Log10 (P-value)')+ theme( axis.text = element_text(size = fs), axis.title = element_text(size = fs), legend.position = 'none', ) }