plot_correlation_PCscore_isoExpr2 <- function(res_isomas,iso,nfeat.pos = NULL, nfeat.neg = NULL, nfeat.pos.mark=50,nfeat.neg.mark=50, PCs="PC_2",fs=24){ ###-----correlation between pc score and isoform expression # extend to all isoforms used in the PCA, but still only mark the top positive and negative isoforms # revised by Hua Tan on 5/9/2023 @4C08 library(ggplot2) N = nrow(iso@reductions$pca@feature.loadings) #3315 for LUAD if(is.null(nfeat.pos)){ nfeat.pos = N } if(is.null(nfeat.neg)){ nfeat.neg = N } data.heat = plot_isomas_heatmap(iso,dims = PCs, nfeat.pos = nfeat.pos, nfeat.neg = nfeat.neg, anno_row = T, anno_col = T, anno_col_keys = c("Mutation"), anno_legend = T, get.data = T,fs = fs, show_rwnms = T, iso_to_gene = NULL, show_gname = F, #remember not to show gene name title=NA,plot=F) pcscore = iso@reductions$pca@cell.embeddings[,PCs] isoExpr = data.heat$scale.data.select pcscore = pcscore[colnames(isoExpr)] # print(all(names(pcscore)==colnames(isoExpr))) #TRUE isoExpr = data.frame(t(isoExpr)) #rows: samples; columns:isoforms res.cor.list = lapply(seq(ncol(isoExpr)),function(j){ temp = cor.test(pcscore,isoExpr[,j],method = 'spearman') return(c(temp$estimate,temp$p.value)) }) names(res.cor.list) = colnames(isoExpr) res.cor.df = do.call(rbind,res.cor.list) colnames(res.cor.df) = c('Spearman.rho','P.value') res.cor.df = data.frame(res.cor.df) res.cor.df$Log10Pvalue = -log10(res.cor.df$P.value) res.cor.df$PC_direction = data.heat$annotation_row[rownames(res.cor.df),'PC_direction'] idx.pos = which(res.cor.df$PC_direction == 'Positive') idx.neg = which(res.cor.df$PC_direction == 'Negative') res.cor.df$Color = 'gray50' res.cor.df$Color[idx.pos[1:nfeat.pos.mark]] = "#FF0000" res.cor.df$Color[idx.neg[1:nfeat.neg.mark]] = "#32CD32" res.cor.df$Shape = 1 res.cor.df$Shape[idx.pos[1:nfeat.pos.mark]] = 24 res.cor.df$Shape[idx.neg[1:nfeat.neg.mark]] = 25 res.cor.df$Size = 1 res.cor.df$Size[idx.pos[1:nfeat.pos.mark]] = 3 res.cor.df$Size[idx.neg[1:nfeat.neg.mark]] = 3 df = res.cor.df ggplot(df,aes(x=Spearman.rho,y=Log10Pvalue))+ geom_point(color=df$Color,size=df$Size,shape=df$Shape)+ labs(x=expression(paste('Spearman correlation (',rho,')')), y='-Log10 (P-value)')+ theme( axis.text = element_text(size = fs), axis.title = element_text(size = fs), legend.position = 'none', ) }