plot_isomas_pvals <- function(pvals_all,sorted = T,pval.thres = 1e-3, showNsamp = T,idx.plot = 50, title = NULL, p.log10 = T, lgd =T,jPC1=4, show_rwnms=T, show_clnms=T, plot.sig=F, get.data=F,scale.by="none",fs=12){ # revised by Hua Tan on 11/23/2022 @4C08 library(pheatmap) if(sorted){ minP = apply(pvals_all[,jPC1:ncol(pvals_all)],1,min) pvals_all = pvals_all[order(minP),] } if(!is.null(pval.thres)){ idx_sig = apply(pvals_all[,jPC1:ncol(pvals_all)],1,function(x){min(x) < pval.thres}) pvals_all = pvals_all[idx_sig,,drop=F] cat('significant p-values: ',nrow(pvals_all),'\n') } minP = apply(pvals_all[,jPC1:ncol(pvals_all)],1,min) minP.idx = apply(pvals_all[,jPC1:ncol(pvals_all)],1,which.min) # print(table(minP.idx)) print(head(minP)) if(showNsamp){ rownames(pvals_all) = paste0(rownames(pvals_all), "(",pvals_all$Mutant,"/", pvals_all$WildType,", ", minP,")") } if(length(idx.plot)==1){ idx.plot = seq(idx.plot) } pvals_all.plot = as.matrix(pvals_all[idx.plot,jPC1:ncol(pvals_all)]) mat.plot = pvals_all.plot # print(dim(pvals_all)) nc = ncol(mat.plot) print(head(mat.plot[,c(1:2,(nc-1):nc)])) if(plot.sig){ cat("plot significant only\n") idx_r = apply(mat.plot,1,function(x){!any(is.na(x))}) mat.plot = mat.plot[idx_r,,drop=F] idx_r2 = apply(mat.plot,1,function(x){min(x,na.rm = T)<pval.thres}) mat.plot = mat.plot[idx_r2,,drop=F] idx_c = apply(mat.plot,2,function(x){min(x,na.rm = T)<pval.thres}) mat.plot = mat.plot[,idx_c,drop=F] nc = ncol(mat.plot) print(head(mat.plot[,c(1:2,(nc-1):nc)])) if(sum(idx_c)<2){ cat('significant PCs are located in less than two PC axes, plotting significant with pheatmap is impossible, switch back to pvals_all.plot\n') mat.plot = pvals_all.plot print(dim(mat.plot)) } } if(p.log10){ cat("plot -log10(p-values)\n") pval.thres.log10 = ceiling(-log10(pval.thres)) mat.plot = -log10(mat.plot) mat.plot[mat.plot>pval.thres.log10] = pval.thres.log10 pheatmap(mat.plot,cluster_rows = F, cluster_cols = F,scale = scale.by,main = title, show_rownames = show_rwnms, show_colnames = show_clnms, fontsize = fs,legend =lgd, legend_breaks = seq(0,pval.thres.log10), legend_labels = c(as.character(seq(0,pval.thres.log10-1)),paste0(">=",pval.thres.log10))) }else{ cat('plot original p-values\n') pheatmap(mat.plot,cluster_rows = F, cluster_cols = F,scale = scale.by,main = title) } if(get.data){ return(mat.plot) } }