import torch import torch.nn as nn from functools import partial import math def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return _no_grad_trunc_normal_(tensor, mean, std, a, b) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) if return_attention: return attn x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size // patch_size) * (img_size // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) return x class VisionTransformer(nn.Module): """ Vision Transformer """ def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): super().__init__() self.num_features = self.embed_dim = embed_dim self.num_classes = num_classes self.patch_embed = PatchEmbed( img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): # convert to list if not isinstance(x, list): x = [x] # Perform forward pass separately on each resolution input. # The inputs corresponding to a single resolution are clubbed and single # forward is run on the same resolution inputs. Hence we do several # forward passes = number of different resolutions used. We then # concatenate all the output features. idx_crops = torch.cumsum(torch.unique_consecutive( torch.tensor([inp.shape[-1] for inp in x]), return_counts=True, )[1], 0) start_idx = 0 for end_idx in idx_crops: _out = self.forward_features(torch.cat(x[start_idx: end_idx])) if start_idx == 0: output = _out else: output = torch.cat((output, _out)) start_idx = end_idx # Run the head forward on the concatenated features. return self.head(output) def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) if self.norm is not None: x = self.norm(x) return x[:, 0] def interpolate_pos_encoding(self, x, pos_embed): npatch = x.shape[1] - 1 N = pos_embed.shape[1] - 1 if npatch == N: return pos_embed class_emb = pos_embed[:, 0] pos_embed = pos_embed[:, 1:] dim = x.shape[-1] pos_embed = nn.functional.interpolate( pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=math.sqrt(npatch / N), mode='bicubic', ) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1) def forward_selfattention(self, x): B, nc, w, h = x.shape x = self.patch_embed(x) # interpolate patch embeddings dim = x.shape[-1] w0 = w // self.patch_embed.patch_size h0 = h // self.patch_embed.patch_size class_pos_embed = self.pos_embed[:, 0] if self.pos_embed.shape[1] == 198: N = self.pos_embed.shape[1] - 2 dist_pos_embed = self.pos_embed[:, 1] patch_pos_embed = self.pos_embed[:, 2:] else: N = self.pos_embed.shape[1] - 1 patch_pos_embed = self.pos_embed[:, 1:] patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) if w0 != patch_pos_embed.shape[-2]: helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device) patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2) if h0 != patch_pos_embed.shape[-1]: helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device) patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-1) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) if self.pos_embed.shape[1] == 198: pos_embed = torch.cat((class_pos_embed.unsqueeze(0), dist_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) else: pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) cls_tokens = self.cls_token.expand(B, -1, -1) if self.pos_embed.shape[1] == 198: dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) else: x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: return blk(x, return_attention=True) def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) # we will return the [CLS] tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: output.append(self.norm(x)[:, 0]) if return_patch_avgpool: x = self.norm(x) # In addition to the [CLS] tokens from the `n` last blocks, we also return # the patch tokens from the last block. This is useful for linear eval. output.append(torch.mean(x[:, 1:], dim=1)) return torch.cat(output, dim=-1) def dino_small(patch_size=16, pretrained=False, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model_url = { 16: "https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth", 8: "https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" } if pretrained: state_dict = torch.hub.load_state_dict_from_url(model_url[patch_size]) model.load_state_dict(state_dict, strict=False) return model