# source code: https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/modeling_vit.py#L559 # coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import math from os.path import join as pjoin import torch import torch.nn as nn from scipy import ndimage import TransformerConfigs_pretrain as configs import math logger = logging.getLogger(__name__) ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu} class ViTEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.patch_embeddings = ViTPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values) # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings #[N, #tokens, hidden_size] class ViTPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = (image_size, image_size) patch_size = (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings class ViTSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, output_attentions = False): key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(self.query(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs #context_layer:[N, #tokens, #hidden_size] class ViTSelfOutput(nn.Module): """ The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class ViTAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = ViTSelfAttention(config) self.output = ViTSelfOutput(config) self.pruned_heads = set() def forward(self, hidden_states, output_attentions = False): self_outputs = self.attention(hidden_states, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class ViTIntermediate(nn.Module): def __init__(self, config) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class ViTOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class ViTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config): super().__init__() self.attention = ViTAttention(config) self.intermediate = ViTIntermediate(config) self.output = ViTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, output_attentions = False): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class ViTEncoder(nn.Module): ''' multiple of ViTlayer ''' def __init__(self, config) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states, output_attentions = False, output_hidden_states = False, return_dict = True): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: #skip all_hidden_states = all_hidden_states + (hidden_states,) else: layer_outputs = layer_module(hidden_states, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: #skip all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: #skip return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return (hidden_states, all_hidden_states, all_self_attentions) class ViTPooler(nn.Module): ''' extract the CLS ''' def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output #[N, hidden_size] class ViTModel_custom(nn.Module): def __init__(self, config, add_pooling_layer=True, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]): super().__init__() self.config = config self.embeddings = ViTEmbeddings(config) self.encoder = ViTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViTPooler(config) if add_pooling_layer else None self.matrixMean = torch.ones(3, config.image_size, config.image_size) self.matrixMean[0] = self.matrixMean[0]*mean[0] # [224, 224] self.matrixMean[1] = self.matrixMean[1]*mean[1] self.matrixMean[2] = self.matrixMean[2]*mean[2] self.matrixStd = torch.ones(3, config.image_size, config.image_size) self.matrixStd[0] = self.matrixStd[0]*std[0] self.matrixStd[1] = self.matrixStd[1]*std[1] self.matrixStd[2] = self.matrixStd[2]*std[2] def get_input_embeddings(self) -> ViTPatchEmbeddings: return self.embeddings.patch_embeddings def forward( self, pixel_values, output_attentions = False, output_hidden_states = False, return_dict = True): """ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ device_temp = pixel_values.device self.matrixMean= self.matrixMean.to(device_temp) self.matrixStd = self.matrixStd.to(device_temp) pixel_values = (pixel_values-self.matrixMean)/self.matrixStd embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] if output_attentions==True: return (sequence_output, pooled_output, encoder_outputs[-1]) else: return (sequence_output, pooled_output) class ViTForImageClassification(nn.Module): def __init__(self, config, model, num_labels): super(ViTForImageClassification, self).__init__() self.config = config self.vit = model self.dropout = nn.Dropout(0.1) self.classifier = nn.Linear(config.hidden_size, num_labels) self.num_labels = num_labels def forward(self, pixel_values, output_attentions=False): outputs = self.vit(pixel_values=pixel_values, output_attentions=output_attentions) output = self.dropout(outputs[0][:,0]) logits = self.classifier(output) if output_attentions==True: return (logits, outputs[-1]) # outputs[-1] is attention (tuple) else: return logits