mvq / thirdparty / prds / prd_score.py
prd_score.py
Raw
# coding=utf-8
# Taken from:
# https://github.com/google/compare_gan/blob/master/compare_gan/src/prd_score.py
#
# Changes:
#   - default dpi changed from 150 to 300
#   - added handling of cases where P = Q, where precision/recall may be
#     just above 1, leading to errors for the f_beta computation
#
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Precision and recall computation based on samples from two distributions.

Given a sample from the true and the fake distribution embedded in some feature
space (say, Inception), it computes the precision and recall via the algorithm
presented in [arxiv.org/abs/1806.00035]. Finally, one can plot the resulting
curves for different models.

Typical usage example:

import prd
  prd_data_1 = prd.compute_prd_from_embedding(eval_feats_1, ref_feats_1)
  prd_data_2 = prd.compute_prd_from_embedding(eval_feats_2, ref_feats_2)
  prd.plot([prd_data_1, prd_data_2], ['GAN_1', 'GAN_2'])
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import warnings

with warnings.catch_warnings():
    warnings.filterwarnings("ignore",category=DeprecationWarning)
    from matplotlib import pyplot as plt
    import numpy as np
    import sklearn.cluster

def compute_prd(eval_dist, ref_dist, num_angles=1001, epsilon=1e-10):
  """Computes the PRD curve for discrete distributions.

  This function computes the PRD curve for the discrete distribution eval_dist
  with respect to the reference distribution ref_dist. This implements the
  algorithm in [arxiv.org/abs/1806.2281349]. The PRD will be computed for an
  equiangular grid of num_angles values between [0, pi/2].

  Args:
    eval_dist: 1D NumPy array or list of floats with the probabilities of the
               different states under the distribution to be evaluated.
    ref_dist: 1D NumPy array or list of floats with the probabilities of the
              different states under the reference distribution.
    num_angles: Number of angles for which to compute PRD. Must be in [3, 1e6].
                The default value is 1001.
    epsilon: Angle for PRD computation in the edge cases 0 and pi/2. The PRD
             will be computes for epsilon and pi/2-epsilon, respectively.
             The default value is 1e-10.

  Returns:
    precision: NumPy array of shape [num_angles] with the precision for the
               different ratios.
    recall: NumPy array of shape [num_angles] with the recall for the different
            ratios.

  Raises:
    ValueError: If not 0 < epsilon <= 0.1.
    ValueError: If num_angles < 3.
  """

  if not (epsilon > 0 and epsilon < 0.1):
    raise ValueError('epsilon must be in (0, 0.1] but is %s.' % str(epsilon))
  if not (num_angles >= 3 and num_angles <= 1e6):
    raise ValueError('num_angles must be in [3, 1e6] but is %d.' % num_angles)

  # Compute slopes for linearly spaced angles between [0, pi/2]
  angles = np.linspace(epsilon, np.pi/2 - epsilon, num=num_angles)
  slopes = np.tan(angles)

  # Broadcast slopes so that second dimension will be states of the distribution
  slopes_2d = np.expand_dims(slopes, 1)

  # Broadcast distributions so that first dimension represents the angles
  ref_dist_2d = np.expand_dims(ref_dist, 0)
  eval_dist_2d = np.expand_dims(eval_dist, 0)

  # Compute precision and recall for all angles in one step via broadcasting
  precision = np.minimum(ref_dist_2d*slopes_2d, eval_dist_2d).sum(axis=1)
  recall = precision / slopes

  # handle numerical instabilities leaing to precision/recall just above 1
  max_val = max(np.max(precision), np.max(recall))
  if max_val > 1.001:
    raise ValueError('Detected value > 1.001, this should not happen.')
  precision = np.clip(precision, 0, 1)
  recall = np.clip(recall, 0, 1)

  return precision, recall


def _cluster_into_bins(eval_data, ref_data, num_clusters):
  """Clusters the union of the data points and returns the cluster distribution.

  Clusters the union of eval_data and ref_data into num_clusters using minibatch
  k-means. Then, for each cluster, it computes the number of points from
  eval_data and ref_data.

  Args:
    eval_data: NumPy array of data points from the distribution to be evaluated.
    ref_data: NumPy array of data points from the reference distribution.
    num_clusters: Number of cluster centers to fit.

  Returns:
    Two NumPy arrays, each of size num_clusters, where i-th entry represents the
    number of points assigned to the i-th cluster.
  """

  cluster_data = np.vstack([eval_data, ref_data])
  kmeans = sklearn.cluster.MiniBatchKMeans(n_clusters=num_clusters, n_init=10)
  labels = kmeans.fit(cluster_data).labels_

  eval_labels = labels[:len(eval_data)]
  ref_labels = labels[len(eval_data):]

  eval_bins = np.histogram(eval_labels, bins=num_clusters,
                           range=[0, num_clusters], density=True)[0]
  ref_bins = np.histogram(ref_labels, bins=num_clusters,
                          range=[0, num_clusters], density=True)[0]
  return eval_bins, ref_bins


def compute_prd_from_embedding(eval_data, ref_data, num_clusters=20,
                               num_angles=1001, num_runs=10,
                               enforce_balance=True):
  """Computes PRD data from sample embeddings.

  The points from both distributions are mixed and then clustered. This leads
  to a pair of histograms of discrete distributions over the cluster centers
  on which the PRD algorithm is executed.

  The number of points in eval_data and ref_data must be equal since
  unbalanced distributions bias the clustering towards the larger dataset. The
  check can be disabled by setting the enforce_balance flag to False (not
  recommended).

  Args:
    eval_data: NumPy array of data points from the distribution to be evaluated.
    ref_data: NumPy array of data points from the reference distribution.
    num_clusters: Number of cluster centers to fit. The default value is 20.
    num_angles: Number of angles for which to compute PRD. Must be in [3, 1e6].
                The default value is 1001.
    num_runs: Number of independent runs over which to average the PRD data.
    enforce_balance: If enabled, throws exception if eval_data and ref_data do
                     not have the same length. The default value is True.

  Returns:
    precision: NumPy array of shape [num_angles] with the precision for the
               different ratios.
    recall: NumPy array of shape [num_angles] with the recall for the different
            ratios.

  Raises:
    ValueError: If len(eval_data) != len(ref_data) and enforce_balance is set to
                True.
  """

  if enforce_balance and len(eval_data) != len(ref_data):
    raise ValueError(
        'The number of points in eval_data %d is not equal to the number of '
        'points in ref_data %d. To disable this exception, set enforce_balance '
        'to False (not recommended).' % (len(eval_data), len(ref_data)))

  eval_data = np.array(eval_data, dtype=np.float64)
  ref_data = np.array(ref_data, dtype=np.float64)
  precisions = []
  recalls = []
  for _ in range(num_runs):
    eval_dist, ref_dist = _cluster_into_bins(eval_data, ref_data, num_clusters)
    precision, recall = compute_prd(eval_dist, ref_dist, num_angles)
    precisions.append(precision)
    recalls.append(recall)
  precision = np.mean(precisions, axis=0)
  recall = np.mean(recalls, axis=0)
  return precision, recall


def _prd_to_f_beta(precision, recall, beta=1, epsilon=1e-10):
  """Computes F_beta scores for the given precision/recall values.

  The F_beta scores for all precision/recall pairs will be computed and
  returned.

  For precision p and recall r, the F_beta score is defined as:
  F_beta = (1 + beta^2) * (p * r) / ((beta^2 * p) + r)

  Args:
    precision: 1D NumPy array of precision values in [0, 1].
    recall: 1D NumPy array of precision values in [0, 1].
    beta: Beta parameter. Must be positive. The default value is 1.
    epsilon: Small constant to avoid numerical instability caused by division
             by 0 when precision and recall are close to zero.

  Returns:
    NumPy array of same shape as precision and recall with the F_beta scores for
    each pair of precision/recall.

  Raises:
    ValueError: If any value in precision or recall is outside of [0, 1].
    ValueError: If beta is not positive.
  """

  if not ((precision >= 0).all() and (precision <= 1).all()):
    raise ValueError('All values in precision must be in [0, 1].')
  if not ((recall >= 0).all() and (recall <= 1).all()):
    raise ValueError('All values in recall must be in [0, 1].')
  if beta <= 0:
    raise ValueError('Given parameter beta %s must be positive.' % str(beta))

  return (1 + beta**2) * (precision * recall) / (
      (beta**2 * precision) + recall + epsilon)


def prd_to_max_f_beta_pair(precision, recall, beta=8):
  """Computes max. F_beta and max. F_{1/beta} for precision/recall pairs.

  Computes the maximum F_beta and maximum F_{1/beta} score over all pairs of
  precision/recall values. This is useful to compress a PRD plot into a single
  pair of values which correlate with precision and recall.

  For precision p and recall r, the F_beta score is defined as:
  F_beta = (1 + beta^2) * (p * r) / ((beta^2 * p) + r)

  Args:
    precision: 1D NumPy array or list of precision values in [0, 1].
    recall: 1D NumPy array or list of precision values in [0, 1].
    beta: Beta parameter. Must be positive. The default value is 8.

  Returns:
    f_beta: Maximum F_beta score.
    f_beta_inv: Maximum F_{1/beta} score.

  Raises:
    ValueError: If beta is not positive.
  """

  if not ((precision >= 0).all() and (precision <= 1).all()):
    raise ValueError('All values in precision must be in [0, 1].')
  if not ((recall >= 0).all() and (recall <= 1).all()):
    raise ValueError('All values in recall must be in [0, 1].')
  if beta <= 0:
    raise ValueError('Given parameter beta %s must be positive.' % str(beta))

  f_beta = np.max(_prd_to_f_beta(precision, recall, beta))
  f_beta_inv = np.max(_prd_to_f_beta(precision, recall, 1/beta))
  return f_beta, f_beta_inv


def plot(precision_recall_pairs, labels=None, out_path=None,
         legend_loc='upper left', dpi=300):
  """Plots precision recall curves for distributions.

  Creates the PRD plot for the given data and stores the plot in a given path.

  Args:
    precision_recall_pairs: List of prd_data to plot. Each item in this list is
                            a 2D array of precision and recall values for the
                            same number of ratios.
    labels: Optional list of labels of same length as list_of_prd_data. The
            default value is None.
    out_path: Output path for the resulting plot. If None, the plot will be
              opened via plt.show(). The default value is None.
    legend_loc: Location of the legend. The default value is 'lower left'.
    dpi: Dots per inch (DPI) for the figure. The default value is 150.

  Raises:
    ValueError: If labels is a list of different length than list_of_prd_data.
  """

  if labels is not None and len(labels) != len(precision_recall_pairs):
    raise ValueError(
        'Length of labels %d must be identical to length of '
        'precision_recall_pairs %d.'
        % (len(labels), len(precision_recall_pairs)))

  fig = plt.figure(figsize=(3.5, 3.5), dpi=dpi)
  plot_handle = fig.add_subplot(111)
  plot_handle.tick_params(axis='both', which='major', labelsize=12)

  for i in range(len(precision_recall_pairs)):
    precision, recall = precision_recall_pairs[i]
    label = labels[i] if labels is not None else None
    plt.plot(recall, precision, label=label, alpha=0.5, linewidth=3)

  if labels is not None:
    #plt.legend(loc=legend_loc)
    plt.legend(bbox_to_anchor=(1.05, 1), loc=legend_loc, borderaxespad=0)

  plt.xlim([0, 1])
  plt.ylim([0, 1])
  plt.xlabel('Recall', fontsize=12)
  plt.ylabel('Precision', fontsize=12)
  plt.tight_layout()
  if out_path is None:
    plt.show()
  else:
    plt.savefig(out_path, bbox_inches='tight', dpi=dpi)
    plt.close()