// Licensed under the MIT License <http://opensource.org/licenses/MIT>. // SPDX-License-Identifier: MIT // Copyright (c) 2021 Noah H. and Tom H. #include <iostream> #include <numeric> #include <map> #include <string> #include <iterator> #include <queue> #include <random> #include <algorithm> #include <vector> #include <unordered_set> #include <functional> #include <tuple> #include <fstream> #include <sched.h> #include <stdlib.h> #include <stdio.h> #include <cstdlib> #include "robin_hood.h" namespace hash_tuple { template <typename TT> struct hash { size_t operator()(TT const& tt) const { return robin_hood::hash<TT>()(tt); } }; } namespace hash_tuple{ namespace { template <class T> inline void hash_combine(std::size_t& seed, T const& v) { seed ^= hash_tuple::hash<T>()(v) + 0x9e3779b9 + (seed<<6) + (seed>>2); } } } namespace hash_tuple{ namespace { // Recursive template code derived from Matthieu M. template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1> struct HashValueImpl { static void apply(size_t& seed, Tuple const& tuple) { HashValueImpl<Tuple, Index-1>::apply(seed, tuple); hash_combine(seed, std::get<Index>(tuple)); } }; template <class Tuple> struct HashValueImpl<Tuple,0> { static void apply(size_t& seed, Tuple const& tuple) { hash_combine(seed, std::get<0>(tuple)); } }; } template <typename ... TT> struct hash<std::tuple<TT...>> { size_t operator()(std::tuple<TT...> const& tt) const { size_t seed = 0; HashValueImpl<std::tuple<TT...> >::apply(seed, tt); return seed; } }; } // 0 INVASION PERCOLATION // 1 LEATH ALGORITHM #define RUN 1 // LEATH TERMINATION CONDITION // 0 TERMINATE AT NUM VERTICES // 1 TERMINATE AT DISTANCE #define TERM 1 using namespace std; typedef tuple<int,int,int> Vertex; typedef tuple<double,int,int,int> VVertex; vector<Vertex> vertex_neighbours(Vertex); tuple<int,int,int,int> LeathRun(int,double); vector<bool> rand_bernoulli(float,int); void print_vertex(Vertex); void write_to_file(vector<tuple<int,int,int,int>> &vec, string file_name) { std::ofstream f(file_name); for(vector<tuple<int,int,int,int>>::const_iterator i = vec.begin(); i != vec.end(); ++i) { f << get<0>(*i) << ','<< get<1>(*i) << ','<<get<2>(*i) <<','<<get<3>(*i)<< '\n'; } } void write_to_file(vector<double> vec, string file_name) { std::ofstream outFile(file_name); for (const auto &e : vec) outFile << e << "\n"; } void write_to_file(vector<int> vec, string file_name) { std::ofstream outFile(file_name); for (const auto &e : vec) outFile << e << "\n"; } vector<Vertex> vertex_neighbours(Vertex v) { int x = get<0>(v); int y = get<1>(v); int z = get<2>(v); vector <Vertex> ret{make_tuple(x+1,y,z), make_tuple(x-1,y,z), make_tuple(x,y+1,z+x), make_tuple(x,y-1,z-x)}; return ret; } vector<bool> rand_bernoulli(double p,int n) { thread_local static random_device rd; thread_local static mt19937 rng(rd()); thread_local static bernoulli_distribution dist(p); thread_local auto gen = [](){ return dist(rng); }; vector<bool> open(n); generate(begin(open), end(open), gen); return open; } vector<double> rand_uniform(int n) { thread_local static random_device rd; thread_local static mt19937_64 rng(rd()); thread_local static uniform_real_distribution<double> dist(0.0,1.0); thread_local auto gen = [](){ return dist(rng); }; vector<double> values(n); generate(begin(values), end(values), gen); return values; } void print_vertex(Vertex v) { std::cout<< "("<<get<0>(v)<<","<<get<1>(v)<<","<<get<2>(v)<<")\n"; } int dist(int x,int y,int z) { if (x==0 && y==0 && z==0) { return 0; } if(z<=0) { y=-y; z=-z; } if (abs(y)>abs(x)) { int temp = y; y=x; x=temp; } if (x<=0) { x=-x; y=-y; } if(y>=0) { float sz = float(sqrt(z)); if(x<=sz) { return 2*(ceil(2*sz))-x-y; } else { if(x*y>=z) { return x+y; } else { return 2*ceil(float(z)/float(x))+x-y; } } } else { float sz = sqrt(float(z-x*y)); if (x<=sz) { return 2*ceil(2*sz)-x+y; } else { return 2*ceil(float(z)/float(x))+x-y; } } } tuple<int,int,int,int> LeathRun(int n, double p) { Vertex initial_vertex = std::make_tuple(0,0,0); robin_hood::unordered_set <Vertex,hash_tuple::hash<Vertex>> visited_vertices; queue<Vertex> vertex_frontier; vertex_frontier.push(initial_vertex); int visited = 1; int num_open_edges = 0; int num_closed_edges = 0; int max_dist = 0; // OR max_dist < n #if TERM == 0 while(visited<n) #endif #if TERM == 1 while(max_dist<n) #endif { if (vertex_frontier.empty()) { break; } Vertex current = vertex_frontier.front(); vertex_frontier.pop(); max_dist = max(max_dist,dist(get<0>(current),get<1>(current),get<2>(current))); if (visited_vertices.find(current) != visited_vertices.end()) { continue; } visited_vertices.insert(current); vector<Vertex> neighbours = vertex_neighbours(current); vector<bool> open = rand_bernoulli(p,4); int num_open = 0; int num = 0; for(int i=0; i < 4; i++) { if(visited_vertices.find(neighbours[i]) == visited_vertices.end()) { if(open[num] == true) { num_open += 1; vertex_frontier.push(neighbours[i]); } num+=1; } } num_open_edges += num_open; num_closed_edges += (num-num_open); visited+=1; } return make_tuple(visited,num_open_edges,num_closed_edges,max_dist); } class Compare { public: bool operator() (VVertex& v1, VVertex& v2) { return get<0>(v1)>get<0>(v2); } }; vector<int> invasion_percolation(int n) { int max_t = ceil(4*log(float(n)/100)/log(2))+1; vector<int> rec_vals(max_t); for (int i=0;i<max_t;i++) { rec_vals[i] = floor(100*pow(2,float(i)/4)); } int rec_index=0; Vertex initial_vertex = std::make_tuple(0,0,0); robin_hood::unordered_set <Vertex,hash_tuple::hash<Vertex>> visited_vertices; visited_vertices.reserve(n+1); visited_vertices.insert(initial_vertex); vector<Vertex> frontier_edges = vertex_neighbours(initial_vertex); int s = frontier_edges.size(); vector<double> frontier_values = rand_uniform(s); priority_queue<VVertex, std::deque <VVertex>, Compare> frontier; for (int i=0;i<s;i++) { frontier.push(tuple_cat(make_tuple(frontier_values[i]),frontier_edges[i])); } vector<int> visited_numbers; visited_numbers.reserve(max_t); int visited_number_running = 4; double current_marker = 1; int visited = 0; while(visited<n) { int num = frontier.size(); if (num==0) { abort(); break; } /*if(visited>0 && visited%1000000==0) { auto it=frontier.lower_bound(make_tuple(current_marker,0,0)); frontier.erase(it,frontier.end()); }*/ visited+=1; VVertex currentE = frontier.top(); Vertex current = make_tuple(get<1>(currentE),get<2>(currentE),get<3>(currentE)); frontier.pop(); //current_marker=1; current_marker = (double)visited/(double)visited_number_running+2.347*pow(visited,-0.4); if (visited_vertices.find(current) != visited_vertices.end()) { if (visited==rec_vals[rec_index]) { rec_index+=1; visited_numbers.push_back(visited_number_running); } continue; } visited_vertices.insert(current); vector<Vertex> neighbours = vertex_neighbours(current); int num_n_v = 0; short ss = neighbours.size(); vector<double> random = rand_uniform(ss); for (int i=0;i<ss;i++) { Vertex &nb = neighbours[i]; if (visited_vertices.find(nb) == visited_vertices.end()) { double &value = random[num_n_v]; num_n_v += 1; if (value<=current_marker) { frontier.emplace(value,get<0>(nb),get<1>(nb),get<2>(nb)); } } } visited_number_running += num_n_v; if(visited==rec_vals[rec_index]) { rec_index+=1; visited_numbers.push_back(visited_number_running); } } return visited_numbers; } // RUN LEATH ALGORITHM // 1. n = max distance/number of steps (depending on TERM) // 2. p = percolation probability // 3. N = number of samples // 4. filename = output path #if RUN == 1 int main(int argc, char** argv) { int n = stoi(argv[1]); double p = stod(argv[2]); int N = stoi(argv[3]); string filename = argv[4]; std::cout << "n="<<n<<", p="<<p<<", N= "<<N<<"\n\n"; int num_per_file = 4000; int num_files_per_directory = 50; int total_per_directory = num_files_per_directory * num_per_file; int num_directories = int(ceil(float(N)/float(total_per_directory))); int num_files_last_directory = int(ceil( float(N-total_per_directory * (num_directories-1))/float(num_per_file))); int num_in_last_file = N-total_per_directory * (num_directories-1)-(num_files_last_directory-1)*num_per_file; for (int i=0; i<num_directories; i++) { string directory_name = filename+"/"+to_string(i); system(("mkdir "+ directory_name).c_str()); int num_files_this_dir; if(i == num_directories-1) { num_files_this_dir = num_files_last_directory; } else { num_files_this_dir = num_files_per_directory; } for (int j=0; j<num_files_this_dir; j++) { string file_name = directory_name+"/res_"+to_string(j); int num_this_file; if(i == num_directories-1 && j == num_files_this_dir-1) { num_this_file = num_in_last_file; } else { num_this_file = num_per_file; } vector<tuple<int,int,int,int>> file_results(num_this_file); for (int w=0; w<num_this_file; w++) { file_results[w] = LeathRun(n,p); } write_to_file(file_results, file_name); } } } #endif // RUN INVASION PERCOLATION // Inputs: // 1. n = length of each run // 2. N = total number of samples // 3. num_runs_per_file = number of runs stored in each file // 4. filename = path of file in which to store output #if RUN == 0 int main(int argc, char** argv) { int n = stoi(argv[1]); int N = stoi(argv[2]); int num_runs_per_file = stoi(argv[3]); string filename = argv[4]; int num_files = ceil(float(N)/float(num_runs_per_file)); int runs_last_file = N-(num_files-1) * num_runs_per_file; for (int j=0;j<num_files;j++) { int num_runs_this_file; if(j==num_files-1) { num_runs_this_file = runs_last_file; } else { num_runs_this_file = num_runs_per_file; } vector<int> results; results.reserve((ceil(4*log(float(n)/100)/log(2))+1)* num_runs_this_file); for (int i=0;i<num_runs_this_file;i++) { vector<int> visited_numbers = invasion_percolation(n); copy (visited_numbers.begin(), visited_numbers.end(),back_inserter(results)); } write_to_file(results,filename+"/f"+to_string(j)); } std::cout << "done\n"; } #endif