// Licensed under the MIT License <http://opensource.org/licenses/MIT>. // SPDX-License-Identifier: MIT // Copyright (c) 2021 Noah H. and Tom H. #include <iostream> #include <numeric> #include <map> #include <string> #include <iterator> #include <queue> #include <random> #include <algorithm> #include <vector> #include <unordered_set> #include <functional> #include <tuple> #include <fstream> #include <sched.h> #include <stdlib.h> #include <stdio.h> #include <cstdlib> #include "robin_hood.h" typedef unsigned long long int LI_t; typedef int pLI_t; namespace hash_tuple { template <typename TT> struct hash { size_t operator()(TT const& tt) const { return robin_hood::hash<TT>()(tt); } }; } namespace hash_tuple{ namespace { template <class T> inline void hash_combine(std::size_t& seed, T const& v) { seed ^= hash_tuple::hash<T>()(v) + 0x9e3779b9 + (seed<<6) + (seed>>2); } } } namespace hash_tuple{ namespace { // Recursive template code derived from Matthieu M. template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1> struct HashValueImpl { static void apply(size_t& seed, Tuple const& tuple) { HashValueImpl<Tuple, Index-1>::apply(seed, tuple); hash_combine(seed, std::get<Index>(tuple)); } }; template <class Tuple> struct HashValueImpl<Tuple,0> { static void apply(size_t& seed, Tuple const& tuple) { hash_combine(seed, std::get<0>(tuple)); } }; } template <typename ... TT> struct hash<std::tuple<TT...>> { size_t operator()(std::tuple<TT...> const& tt) const { size_t seed = 0; HashValueImpl<std::tuple<TT...> >::apply(seed, tt); return seed; } }; } using namespace std; // 0 INVASION PERCOLATION // 1 LEATH ALGORITHM #define RUN 0 //3 H_3 //4 H_4 #define TYPE 4 #if TYPE == 3 //H3 typedef tuple<LI_t,LI_t,pLI_t,pLI_t> Vertex; typedef tuple<double,LI_t,LI_t,pLI_t,pLI_t> VVertex; #endif #if TYPE == 4 //H4 typedef tuple<LI_t,LI_t,LI_t,pLI_t> Vertex; typedef tuple<double,LI_t,LI_t,LI_t,pLI_t> VVertex; #endif vector<Vertex> vertex_neighbours(Vertex); tuple<int,int,int> LeathRun(int,double); vector<bool> rand_bernoulli(float,int); void write_to_file(vector<tuple<int,int,int>> &vec, string file_name) { std::ofstream f(file_name); for(vector<tuple<int,int,int>>::const_iterator i = vec.begin(); i != vec.end(); ++i) { f << get<0>(*i) << ','<< get<1>(*i) << ','<<get<2>(*i) << '\n'; } } LI_t rand_long() { thread_local static random_device rd; thread_local static mt19937_64 rng(rd()); thread_local static uniform_int_distribution<LI_t> dist; return dist(rng); } //The fractal coordinates are encoded in binary vector<LI_t> nbs4(LI_t vertex) { short first = vertex &15; LI_t cleared = vertex; LI_t vertex_copy = vertex; for(int i = 0;i <4;i++) { cleared &= ~(1ULL<<i); } LI_t flipped = cleared; int i=0; for(i = 0;i <16;i++) { vertex_copy = vertex_copy >>4; flipped &= ~(1ULL << (4*i+4)); flipped &= ~(1ULL << (4*i+5)); flipped &= ~(1ULL << (4*i+6)); flipped &= ~(1ULL << (4*i+7)); if((vertex_copy &15)!=first) { break; } } short after = vertex_copy &15; short replace_first_1=-1; short replace_after_1; short replace_first_2; short replace_after_2; if(first ==0 && after ==15) { replace_first_1=1; replace_after_1=0; replace_first_2=15; replace_after_2=14; } else if(first ==15 && after ==14) { replace_first_1=0; replace_after_1=15; replace_first_2=14; replace_after_2=13; } else if(first ==14 && after ==13) { replace_first_1=15; replace_after_1=14; replace_first_2=13; replace_after_2=12; } else if(first ==13 && after ==12) { replace_first_1=14; replace_after_1=13; replace_first_2=12; replace_after_2=11; } else if(first ==12 && after ==11) { replace_first_1=13; replace_after_1=12; replace_first_2=11; replace_after_2=10; } else if(first ==11 && after ==10) { replace_first_1=12; replace_after_1=11; replace_first_2=10; replace_after_2=9; } else if(first ==10 && after ==9) { replace_first_1=11; replace_after_1=10; replace_first_2=9; replace_after_2=8; } else if(first ==9 && after ==8) { replace_first_1=10; replace_after_1=9; replace_first_2=8; replace_after_2=7; } else if(first ==8 && after ==7) { replace_first_1=9; replace_after_1=8; replace_first_2=7; replace_after_2=6; } else if(first ==7 && after ==6) { replace_first_1=8; replace_after_1=7; replace_first_2=6; replace_after_2=5; } else if(first ==6 && after ==5) { replace_first_1=7; replace_after_1=6; replace_first_2=5; replace_after_2=4; } else if(first ==5 && after ==4) { replace_first_1=6; replace_after_1=5; replace_first_2=4; replace_after_2=3; } else if(first ==4 && after ==3) { replace_first_1=5; replace_after_1=4; replace_first_2=3; replace_after_2=2; } else if(first ==3 && after ==2) { replace_first_1=4; replace_after_1=3; replace_first_2=2; replace_after_2=1; } else if(first ==2 && after ==1) { replace_first_1=3; replace_after_1=2; replace_first_2=1; replace_after_2=0; } else if(first ==1 && after ==0) { replace_first_1=2; replace_after_1=1; replace_first_2=0; replace_after_2=15; } else { vector<LI_t> nbs; if(first == 0 ) { nbs={cleared|1,cleared|15}; } else if(first == 1) { nbs={cleared|2,cleared|0}; } else if(first == 2) { nbs={cleared|3,cleared|1}; } else if(first == 3) { nbs={cleared|4,cleared|2}; } else if(first == 4) { nbs={cleared|5,cleared|3}; } else if(first == 5) { nbs={cleared|6,cleared|4}; } else if(first == 6) { nbs={cleared|7,cleared|5}; } else if(first == 7) { nbs={cleared|8,cleared|6}; } else if(first == 8) { nbs={cleared|9,cleared|7}; } else if(first == 9) { nbs={cleared|10,cleared|8}; } else if(first == 10) { nbs={cleared|11,cleared|9}; } else if(first == 11) { nbs={cleared|12,cleared|10}; } else if(first == 12) { nbs={cleared|13,cleared|11}; } else if(first == 13) { nbs={cleared|14,cleared|12}; } else if(first == 14) { nbs={cleared|15,cleared|13}; } else if(first == 15) { nbs={cleared|0,cleared|14}; } return nbs; } LI_t flipped_2 = flipped; for(int j=0;j<=i;j++) { flipped |=(replace_first_1<<4*j); } flipped |=(replace_after_1<<4*(i+1)); for(int j=0;j<=i;j++) { flipped_2 |=(replace_first_2<<4*j); } flipped_2 |=(replace_after_2<<4*(i+1)); vector<LI_t> nbs; if(first == 0 ) { nbs={flipped,flipped_2,cleared|1,cleared|15}; } else if(first == 1) { nbs={flipped,flipped_2,cleared|2,cleared|0}; } else if(first == 2) { nbs={flipped,flipped_2,cleared|3,cleared|1}; } else if(first == 3) { nbs={flipped,flipped_2,cleared|4,cleared|2}; } else if(first == 4) { nbs={flipped,flipped_2,cleared|5,cleared|3}; } else if(first == 5) { nbs={flipped,flipped_2,cleared|6,cleared|4}; } else if(first == 6) { nbs={flipped,flipped_2,cleared|7,cleared|5}; } else if(first == 7) { nbs={flipped,flipped_2,cleared|8,cleared|6}; } else if(first == 8) { nbs={flipped,flipped_2,cleared|9,cleared|7}; } else if(first == 9) { nbs={flipped,flipped_2,cleared|10,cleared|8}; } else if(first == 10) { nbs={flipped,flipped_2,cleared|11,cleared|9}; } else if(first == 11) { nbs={flipped,flipped_2,cleared|12,cleared|10}; } else if(first == 12) { nbs={flipped,flipped_2,cleared|13,cleared|11}; } else if(first == 13) { nbs={flipped,flipped_2,cleared|14,cleared|12}; } else if(first == 14) { nbs={flipped,flipped_2,cleared|15,cleared|13}; } else if(first == 15) { nbs={flipped,flipped_2,cleared|0,cleared|14}; } return nbs; } vector<LI_t> nbs3(LI_t vertex) { short first = vertex &7; LI_t cleared = vertex; LI_t vertex_copy = vertex; for(int i = 0;i <3;i++) { cleared &= ~(1ULL<<i); } LI_t flipped = cleared; int i=0; for(i = 0;i <21;i++) { vertex_copy = vertex_copy >>3; flipped &= ~(1ULL << (3*i+3)); flipped &= ~(1ULL << (3*i+4)); flipped &= ~(1ULL << (3*i+5)); if((vertex_copy &7)!=first) { break; } } short after = vertex_copy &7; short replace_first_1=-1; short replace_after_1; short replace_first_2; short replace_after_2; if(first ==0 && after ==7) { replace_first_1=1; replace_after_1=0; replace_first_2=7; replace_after_2=6; } else if(first ==7 && after ==6) { replace_first_1=0; replace_after_1=7; replace_first_2=6; replace_after_2=5; } else if(first ==6 && after ==5) { replace_first_1=7; replace_after_1=6; replace_first_2=5; replace_after_2=4; } else if(first ==5 && after ==4) { replace_first_1=6; replace_after_1=5; replace_first_2=4; replace_after_2=3; } else if(first ==4 && after ==3) { replace_first_1=5; replace_after_1=4; replace_first_2=3; replace_after_2=2; } else if(first ==3 && after ==2) { replace_first_1=4; replace_after_1=3; replace_first_2=2; replace_after_2=1; } else if(first ==2 && after ==1) { replace_first_1=3; replace_after_1=2; replace_first_2=1; replace_after_2=0; } else if(first ==1 && after ==0) { replace_first_1=2; replace_after_1=1; replace_first_2=0; replace_after_2=7; } else { vector<LI_t> nbs; if(first == 0 ) { nbs={cleared|1,cleared|7}; } else if(first == 1) { nbs={cleared|2,cleared|0}; } else if(first == 2) { nbs={cleared|3,cleared|1}; } else if(first == 3) { nbs={cleared|4,cleared|2}; } else if(first == 4) { nbs={cleared|5,cleared|3}; } else if(first == 5) { nbs={cleared|6,cleared|4}; } else if(first == 6) { nbs={cleared|7,cleared|5}; } else if(first == 7) { nbs={cleared|0,cleared|6}; } return nbs; } LI_t flipped_2 = flipped; for(int j=0;j<=i;j++) { flipped |=(replace_first_1<<3*j); } flipped |=(replace_after_1<<3*(i+1)); for(int j=0;j<=i;j++) { flipped_2 |=(replace_first_2<<3*j); } flipped_2 |=(replace_after_2<<3*(i+1)); vector<LI_t> nbs; if(first == 0 ) { nbs={flipped,flipped_2,cleared|1,cleared|7}; } else if(first == 1) { nbs={flipped,flipped_2,cleared|2,cleared|0}; } else if(first == 2) { nbs={flipped,flipped_2,cleared|3,cleared|1}; } else if(first == 3) { nbs={flipped,flipped_2,cleared|4,cleared|2}; } else if(first == 4) { nbs={flipped,flipped_2,cleared|5,cleared|3}; } else if(first == 5) { nbs={flipped,flipped_2,cleared|6,cleared|4}; } else if(first == 6) { nbs={flipped,flipped_2,cleared|7,cleared|5}; } else if(first == 7) { nbs={flipped,flipped_2,cleared|0,cleared|6}; } return nbs; } vector<LI_t> nbs3o2(LI_t vertex) { short first = vertex &7; LI_t cleared = vertex; LI_t vertex_copy = vertex; for(int i = 0;i <3;i++) { cleared &= ~(1ULL<<i); } LI_t flipped = cleared; int i=0; for(i = 0;i <21;i++) { vertex_copy = vertex_copy >>3; flipped &= ~(1ULL << (3*i+3)); flipped &= ~(1ULL << (3*i+4)); flipped &= ~(1ULL << (3*i+5)); if((vertex_copy &7)!=first) { break; } } short after = vertex_copy &7; short replace_first_1; short replace_after_1; short replace_first_2=-1; short replace_after_2; if(after==1 && first ==5) { replace_after_1=0; replace_first_1=1; } else if(after==0 && first ==1) { replace_after_1=1; replace_first_1=5; } else if(after==7 && first ==3) { replace_after_1=6; replace_first_1=7; } else if(after==6 && first ==7) { replace_after_1=7; replace_first_1=3; } else if(after==2 && first ==3) { replace_after_1=3; replace_first_1=7; } else if(after==3 && first ==7) { replace_after_1=2; replace_first_1=3; } else if(after==4 && first ==5) { replace_after_1=5; replace_first_1=1; } else if(after==5 && first ==1) { replace_after_1=4; replace_first_1=5; } else if(after==0 && first ==5) { replace_after_1=2; replace_first_1=7; replace_after_2=6; replace_first_2=3; } else if(after==2 && first ==7) { replace_after_1=0; replace_first_1=5; replace_after_2=4; replace_first_2=1; } else if(after==4 && first ==1) { replace_after_1=2; replace_first_1=7; replace_after_2=6; replace_first_2=3; } else if(after==6 && first ==3) { replace_after_1=0; replace_first_1=5; replace_after_2=4; replace_first_2=1; } else { vector<LI_t> nbs; if(first == 0 ) { nbs={cleared|1,cleared|2,cleared|6}; } else if(first == 1) { nbs={cleared|0}; } else if(first == 2) { nbs={cleared|3,cleared|4,cleared|0}; } else if(first == 3) { nbs={cleared|2}; } else if(first == 4) { nbs={cleared|5,cleared|6,cleared|2}; } else if(first == 5) { nbs={cleared|4}; } else if(first == 6) { nbs={cleared|7,cleared|0,cleared|4}; } else if(first == 7) { nbs={cleared|6}; } return nbs; } if(replace_first_2!=-1) { LI_t flipped_2 = flipped; for(int j=0;j<=i;j++) { flipped |=(replace_first_1<<3*j); } flipped |=(replace_after_1<<3*(i+1)); for(int j=0;j<=i;j++) { flipped_2 |=(replace_first_2<<3*j); } flipped_2 |=(replace_after_2<<3*(i+1)); vector<LI_t> nbs; if(first == 0 ) { nbs={flipped,flipped_2,cleared|1,cleared|2,cleared|6}; } else if(first == 1) { nbs={flipped,flipped_2,cleared|0}; } else if(first == 2) { nbs={flipped,flipped_2,cleared|3,cleared|4,cleared|0}; } else if(first == 3) { nbs={flipped,flipped_2,cleared|2}; } else if(first == 4) { nbs={flipped,flipped_2,cleared|5,cleared|6,cleared|2}; } else if(first == 5) { nbs={flipped,flipped_2,cleared|4}; } else if(first == 6) { nbs={flipped,flipped_2,cleared|7,cleared|0,cleared|4}; } else if(first == 7) { nbs={flipped,flipped_2,cleared|6}; } return nbs; } else { for(int j=0;j<=i;j++) { flipped |=(replace_first_1<<3*j); } flipped |=(replace_after_1<<3*(i+1)); vector<LI_t> nbs; if(first == 0 ) { nbs={flipped,cleared|1,cleared|2,cleared|6}; } else if(first == 1) { nbs={flipped,cleared|0}; } else if(first == 2) { nbs={flipped,cleared|3,cleared|4,cleared|0}; } else if(first == 3) { nbs={flipped,cleared|2}; } else if(first == 4) { nbs={flipped,cleared|5,cleared|6,cleared|2}; } else if(first == 5) { nbs={flipped,cleared|4}; } else if(first == 6) { nbs={flipped,cleared|7,cleared|0,cleared|4}; } else if(first == 7) { nbs={flipped,cleared|6}; } return nbs; } } #if TYPE ==3 vector<Vertex> vertex_neighbours(Vertex v) { LI_t nbs3_1 = get<0>(v); LI_t nbs3_2 = get<1>(v); pLI_t z1 = get<2>(v); pLI_t z2 = get<3>(v); vector<LI_t> nbs3_1_neighbours = nbs3(nbs3_1); vector<LI_t> nbs3_2_neighbours = nbs3(nbs3_2); //vector<LI_t> quad_neighbours = neighbours_cub(quad); //std::cout<<tri_1_neighbours.size()<<","<<tri_2_neighbours.size()<<","<<quad_neighbours.size()<<"\n"; vector<Vertex> neighbours; //neighbours.reserve(tri_1_neighbours.size()+tri_2_neighbours.size()+quad_neighbours.size()); neighbours.reserve(4+nbs3_1_neighbours.size()+nbs3_2_neighbours.size()); for (int i=0;i<nbs3_1_neighbours.size();i++) { neighbours.emplace_back(nbs3_1_neighbours[i],nbs3_2,z1,z2); } for (int i=0;i<nbs3_2_neighbours.size();i++) { neighbours.emplace_back(nbs3_1,nbs3_2_neighbours[i],z1,z2); } neighbours.emplace_back(nbs3_1,nbs3_2,z1-1,z2); neighbours.emplace_back(nbs3_1,nbs3_2,z1+1,z2); neighbours.emplace_back(nbs3_1,nbs3_2,z1,z2-1); neighbours.emplace_back(nbs3_1,nbs3_2,z1,z2+1); return neighbours; } #endif #if TYPE == 4 vector<Vertex> vertex_neighbours(Vertex v) { LI_t a3o2_1 = get<0>(v); LI_t a3o2_2 = get<1>(v); LI_t a4_1 = get<2>(v); pLI_t z = get<3>(v); vector<LI_t> a3o2_1_neighbours = nbs3o2(a3o2_1); vector<LI_t> a3o2_2_neighbours = nbs3o2(a3o2_2); vector<LI_t> a4_1_neighbours = nbs4(a4_1); vector<Vertex> neighbours; neighbours.reserve(a3o2_1_neighbours.size()+\ a3o2_2_neighbours.size()+\ a4_1_neighbours.size()+2); for (int i=0;i<a3o2_1_neighbours.size();i++) { neighbours.emplace_back(a3o2_1_neighbours[i],a3o2_2,a4_1,z); } for (int i=0;i<a3o2_2_neighbours.size();i++) { neighbours.emplace_back(a3o2_1,a3o2_2_neighbours[i],a4_1,z); } for (int i=0;i<a4_1_neighbours.size();i++) { neighbours.emplace_back(a3o2_1,a3o2_2,a4_1_neighbours[i],z); } neighbours.emplace_back(a3o2_1,a3o2_2,a4_1,z-1); neighbours.emplace_back(a3o2_1,a3o2_2,a4_1,z+1); return neighbours; } #endif vector<bool> rand_bernoulli(double p,int n) { thread_local static random_device rd; thread_local static mt19937 rng(rd()); thread_local static bernoulli_distribution dist(p); thread_local auto gen = [](){ return dist(rng); }; vector<bool> open(n); generate(begin(open), end(open), gen); return open; } void write_to_file(vector<double> vec, string file_name) { std::ofstream outFile(file_name); for (const auto &e : vec) outFile << e << "\n"; } vector<double> rand_uniform(int n) { thread_local static random_device rd; thread_local static mt19937_64 rng(rd()); thread_local static uniform_real_distribution<double> dist(0.0,1.0); thread_local auto gen = [](){ return dist(rng); }; vector<double> values(n); generate(begin(values), end(values), gen); return values; } class Compare { public: bool operator() (const VVertex& v1 , const VVertex& v2 ) { return get<0>(v1)>get<0>(v2); } }; LI_t vector_to_int(vector<short> coords,int mult) { LI_t total = 0; int i=0; for (auto it = coords.rbegin(); it != coords.rend(); ++it) { total+=pow(mult,i)* (*it); i++; } return total; } vector<short> int_to_vector(LI_t num,short mult) { if(num==0) { return vector<short>{0}; } std::vector<short> digits (floor(log(num)/log(mult))+1); int i=0; while(num > 0) { digits[digits.size()-1-i] = num%mult; num /= mult; i++; } return digits; } vector<vector<short>> int_to_vector(vector<LI_t> nums,int mult) { vector<vector<short>> all(nums.size()); for (int i=0;i<nums.size();i++) { all[i] = int_to_vector(nums[i],mult); } return all; } template<typename T> ostream& operator<< (ostream& out, const vector<T>& v) { out << "{"; size_t last = v.size() - 1; for(size_t i = 0; i < v.size(); ++i) { out << v[i]; if (i != last) out << ", "; } out << "}"; return out; } vector<int> invasion_percolation(int n) { int max_t = ceil(4*log(float(n)/100)/log(2))+1; //std::cout<<max_t<<"\n"; vector<int> rec_vals(max_t); for (int i=0;i<max_t;i++) { rec_vals[i] = floor(100*pow(2,float(i)/4)); } int rec_index=0; #if TYPE==3 Vertex initial_vertex = std::make_tuple(rand_long(),rand_long(),0,0); #endif #if TYPE==4 Vertex initial_vertex = std::make_tuple(rand_long(),rand_long(),rand_long(),0); #endif robin_hood::unordered_set <Vertex,hash_tuple::hash<Vertex>> visited_vertices; visited_vertices.reserve(n+1); visited_vertices.insert(initial_vertex); vector<Vertex> frontier_edges = vertex_neighbours(initial_vertex); int s = frontier_edges.size(); vector<double> frontier_values = rand_uniform(s); priority_queue<VVertex, std::deque <VVertex>, Compare> frontier; for (int i=0;i<s;i++) { frontier.push(tuple_cat(make_tuple(frontier_values[i]),frontier_edges[i])); } vector<int> visited_numbers; visited_numbers.reserve(max_t); int visited_number_running = 4; double current_marker = 1; int visited = 0; while(visited<n) { int num = frontier.size(); if (num==0) { abort(); break; } /*if(visited>0 && visited%1000000==0) { auto it=frontier.lower_bound(make_tuple(current_marker,0,0)); frontier.erase(it,frontier.end()); }*/ visited+=1; VVertex currentE = frontier.top(); Vertex current = make_tuple(get<1>(currentE),get<2>(currentE),get<3>(currentE),get<4>(currentE)); frontier.pop(); //current_marker=1; //Hmult3 #if TYPE==3 current_marker = (double)visited/(double)visited_number_running+1.005*pow(visited,-0.461); #endif //Hmult4 #if TYPE==4 current_marker = (double)visited/(double)visited_number_running+0.5578*pow(visited,-0.41583); #endif if (visited_vertices.find(current) != visited_vertices.end()) { if (visited==rec_vals[rec_index]) { rec_index+=1; visited_numbers.push_back(visited_number_running); } continue; } visited_vertices.insert(current); vector<Vertex> neighbours = vertex_neighbours(current); int num_n_v = 0; short ss = neighbours.size(); vector<double> random = rand_uniform(ss); for (int i=0;i<ss;i++) { Vertex &nb = neighbours[i]; if (visited_vertices.find(nb) == visited_vertices.end()) { double &value = random[num_n_v]; num_n_v += 1; if (value<=current_marker) { frontier.emplace(value,get<0>(nb),get<1>(nb),get<2>(nb),get<3>(nb)); } } } visited_number_running += num_n_v; if(visited==rec_vals[rec_index]) { rec_index+=1; visited_numbers.push_back(visited_number_running); } } return visited_numbers; } void write_to_file(vector<int> vec, string file_name) { std::ofstream outFile(file_name); for (const auto &e : vec) outFile << e << "\n"; } tuple<int,int,int> LeathRun(int n, double p) { Vertex initial_vertex = std::make_tuple(rand_long(),rand_long(),rand_long(),0); robin_hood::unordered_set <Vertex,hash_tuple::hash<Vertex>> visited_vertices; queue<Vertex> vertex_frontier; vertex_frontier.push(initial_vertex); int visited = 1; int num_open_edges = 0; int num_closed_edges = 0; while(visited < n) { if (vertex_frontier.empty()) { break; } Vertex current = vertex_frontier.front(); vertex_frontier.pop(); if (visited_vertices.find(current) != visited_vertices.end()) { continue; } visited_vertices.insert(current); vector<Vertex> neighbours = vertex_neighbours(current); short nn = neighbours.size(); vector<bool> open = rand_bernoulli(p,nn); int num_open = 0; int num = 0; for(int i=0; i < nn; i++) { if(visited_vertices.find(neighbours[i]) == visited_vertices.end()) { if(open[num] == true) { num_open += 1; vertex_frontier.push(neighbours[i]); } num+=1; } } num_open_edges += num_open; num_closed_edges += (num-num_open); visited+=1; } return make_tuple(visited,num_open_edges,num_closed_edges); } // RUN LEATH ALGORITHM // 1. n = max distance/number of steps (depending on TERM) // 2. p = percolation probability // 3. N = number of samples // 4. filename = output path #if RUN == 1 int main(int argc, char** argv) { int n = stoi(argv[1]); double p = stod(argv[2]); int N = stoi(argv[3]); string filename = argv[4]; std::cout << "n="<<n<<", p="<<p<<", N= "<<N<<"\n\n"; int num_per_file = 4000; int num_files_per_directory = 50; int total_per_directory = num_files_per_directory * num_per_file; int num_directories = int(ceil(float(N)/float(total_per_directory))); int num_files_last_directory = int(ceil( float(N-total_per_directory * (num_directories-1))/float(num_per_file))); int num_in_last_file = N-total_per_directory * (num_directories-1)-(num_files_last_directory-1)*num_per_file; for (int i=0; i<num_directories; i++) { string directory_name = filename+"/"+to_string(i); system(("mkdir "+ directory_name).c_str()); int num_files_this_dir; if(i == num_directories-1) { num_files_this_dir = num_files_last_directory; } else { num_files_this_dir = num_files_per_directory; } for (int j=0; j<num_files_this_dir; j++) { string file_name = directory_name+"/res_"+to_string(j); int num_this_file; if(i == num_directories-1 && j == num_files_this_dir-1) { num_this_file = num_in_last_file; } else { num_this_file = num_per_file; } vector<tuple<int,int,int>> file_results(num_this_file); for (int w=0; w<num_this_file; w++) { file_results[w] = LeathRun(n,p); } write_to_file(file_results, file_name); } } } #endif // RUN INVASION PERCOLATION // Inputs: // 1. n = length of each run // 2. N = total number of samples // 3. num_runs_per_file = number of runs stored in each file // 4. filename = path of file in which to store output #if RUN == 0 int main(int argc, char** argv) { int n = stoi(argv[1]); int N = stoi(argv[2]); int num_runs_per_file = stoi(argv[3]); string filename = argv[4]; int num_files = ceil(float(N)/float(num_runs_per_file)); int runs_last_file = N-(num_files-1) * num_runs_per_file; for (int j=0;j<num_files;j++) { int num_runs_this_file; if(j==num_files-1) { num_runs_this_file = runs_last_file; } else { num_runs_this_file = num_runs_per_file; } vector<int> results; results.reserve((ceil(4*log(float(n)/100)/log(2))+1)* num_runs_this_file); for (int i=0;i<num_runs_this_file;i++) { vector<int> visited_numbers = invasion_percolation(n); copy (visited_numbers.begin(), visited_numbers.end(),back_inserter(results)); } write_to_file(results,filename+"/f"+to_string(j)); } std::cout << "done\n"; } #endif