// Licensed under the MIT License . // SPDX-License-Identifier: MIT // Copyright (c) 2021 Noah H. and Tom H. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "robin_hood.h" typedef unsigned long long int LI_t; namespace hash_tuple { template struct hash { size_t operator()(TT const& tt) const { return robin_hood::hash()(tt); } }; } namespace hash_tuple{ namespace { template inline void hash_combine(std::size_t& seed, T const& v) { seed ^= hash_tuple::hash()(v) + 0x9e3779b9 + (seed<<6) + (seed>>2); } } } namespace hash_tuple{ namespace { // Recursive template code derived from Matthieu M. template ::value - 1> struct HashValueImpl { static void apply(size_t& seed, Tuple const& tuple) { HashValueImpl::apply(seed, tuple); hash_combine(seed, std::get(tuple)); } }; template struct HashValueImpl { static void apply(size_t& seed, Tuple const& tuple) { hash_combine(seed, std::get<0>(tuple)); } }; } template struct hash> { size_t operator()(std::tuple const& tt) const { size_t seed = 0; HashValueImpl >::apply(seed, tt); return seed; } }; } // 0 INVASION PERCOLATION // 1 LEATH ALGORITHM #define RUN 0 // 1 H1 // 2 H2 #define TYPE 1 using namespace std; typedef tuple Vertex; typedef tuple VVertex; vector vertex_neighbours(Vertex); tuple LeathRun(int,double); vector rand_bernoulli(float,int); void write_to_file(vector vec, string file_name) { std::ofstream outFile(file_name); for (const auto &e : vec) outFile << e << "\n"; } void write_to_file(vector> &vec, string file_name) { std::ofstream f(file_name); for(vector>::const_iterator i = vec.begin(); i != vec.end(); ++i) { f << get<0>(*i) << ','<< get<1>(*i) << ','<(*i) << '\n'; } } void write_to_file(vector vec, string file_name) { std::ofstream outFile(file_name); for (const auto &e : vec) outFile << e << "\n"; } LI_t rand_long() { thread_local static random_device rd; thread_local static mt19937_64 rng(rd()); thread_local static uniform_int_distribution dist; return dist(rng); } vector rand_uniform(int n) { thread_local static random_device rd; thread_local static mt19937_64 rng(rd()); thread_local static uniform_real_distribution dist(0.0,1.0); thread_local auto gen = [](){ return dist(rng); }; vector values(n); generate(begin(values), end(values), gen); return values; } //The fractal coordinates are encoded in binary vector neighbours(LI_t vertex) { short first = vertex & 3; LI_t cleared = vertex; cleared &= ~1ULL; cleared &= ~(1ULL<<1); LI_t vertex_copy = vertex; LI_t flipped = vertex; flipped &= ~1ULL; flipped &= ~(1ULL<<1); int i=0; for(i=0;i<31;i++) { vertex_copy = vertex_copy>>2; flipped &= ~(1ULL << (2*i+2)); flipped &= ~(1ULL << (2*i+3)); if((vertex_copy &3) != first) { break; } } if(i==30) { abort(); } short after = vertex_copy & 3; short replace_first; short replace_after; if(first == 1 && after == 0) { replace_first = 0; replace_after = 1; } else if(first == 0 && after==1) { replace_first = 1; replace_after = 0; } else if(first == 1 && after==2) { replace_first = 2; replace_after = 1; } else if(first == 2 && after==1) { replace_first = 1; replace_after = 2; } else if(first == 2 && after==3) { replace_first = 3; replace_after = 2; } else if(first == 3 && after==2) { replace_first = 2; replace_after = 3; } else { vector nbs; if(first == 0) { nbs = {cleared|1}; } else if(first == 1) { nbs = {cleared|0,cleared|2}; } else if(first == 2) { nbs = {cleared|1,cleared|3}; } else { nbs = {cleared|2}; } return nbs; } for (int j = 0;j<=i;j++) { flipped |=(replace_first<<2*j); } flipped |=(replace_after<<2*(i+1)); vector nbs; if(first == 0) { nbs = {cleared|1,flipped}; } else if(first == 1) { nbs = {cleared|0,cleared|2,flipped}; } else if(first == 2) { nbs = {cleared|1,cleared|3,flipped}; } else { nbs = {cleared|2,flipped}; } return nbs; } vector neighbours2(LI_t vertex) { short first = vertex & 3; LI_t cleared = vertex; cleared &= ~1ULL; cleared &= ~(1ULL<<1); vector nbs; if(first == 0) { nbs = {cleared|1}; } else if(first == 1) { nbs = {cleared|0,cleared|2}; } else if(first == 2) { nbs = {cleared|1,cleared|3}; } else { nbs = {cleared|2}; } LI_t vertex_copy = vertex; LI_t flipped = vertex; flipped &= ~1ULL; flipped &= ~(1ULL<<1); //std::cout<(flipped)<<"\n"; int i=0; for(i=0;i<31;i++) { vertex_copy = vertex_copy>>2; flipped &= ~(1ULL << (2*i+2)); flipped &= ~(1ULL << (2*i+3)); if((vertex_copy &3) != first) { break; } } if(i==30) { cout<<"note"; abort(); } short after = vertex_copy & 3; short replace_first; short replace_after; short replace_first_2=-1; short replace_after_2=-1; if(first == 2 && after == 0) { replace_first = 3; replace_after = 1; } else if(first == 3 && after==1) { replace_first = 2; replace_after = 0; replace_first_2=0; replace_after_2=2; } else if(first == 0 && after==2) { replace_first = 3; replace_after = 1; replace_first_2 = 1; replace_after_2 = 3; } else if(first == 1 && after==3) { replace_first = 0; replace_after = 2; } else { return nbs; } LI_t flipped_2 = flipped; for (int j = 0;j<=i;j++) { flipped |=(replace_first<<2*j); } flipped |=(replace_after<<2*(i+1)); if(replace_first_2!=-1) { for (int j = 0;j<=i;j++) { flipped_2 |=(replace_first_2<<2*j); } flipped_2 |=(replace_after_2<<2*(i+1)); } nbs.push_back(flipped); if(replace_first_2!=-1) { nbs.push_back(flipped_2); } return nbs; } vector vertex_neighbours(Vertex v) { LI_t HH = get<0>(v); int EE = get<1>(v); //H1 #if TYPE == 1 vector Hneighbours = neighbours(HH); #endif //H2 #if TYPE == 2 vector Hneighbours = neighbours2(HH); #endif short s = Hneighbours.size(); vector ret; ret.reserve(2+s); ret.emplace_back(HH,EE-1); ret.emplace_back(HH,EE+1); for(int i=0;i rand_bernoulli(double p,int n) { thread_local static random_device rd; thread_local static mt19937 rng(rd()); thread_local static bernoulli_distribution dist(p); thread_local auto gen = [](){ return dist(rng); }; vector open(n); generate(begin(open), end(open), gen); return open; } tuple LeathRun(int n, double p) { Vertex initial_vertex = std::make_tuple(rand_long(),0); robin_hood::unordered_set > visited_vertices; queue vertex_frontier; vertex_frontier.push(initial_vertex); int visited = 1; int num_open_edges = 0; int num_closed_edges = 0; while(visited < n) { if (vertex_frontier.empty()) { break; } Vertex current = vertex_frontier.front(); vertex_frontier.pop(); if (visited_vertices.find(current) != visited_vertices.end()) { continue; } visited_vertices.insert(current); vector neighbours = vertex_neighbours(current); short nn = neighbours.size(); vector open = rand_bernoulli(p,nn); int num_open = 0; int num = 0; for(int i=0; i < nn; i++) { if(visited_vertices.find(neighbours[i]) == visited_vertices.end()) { if(open[num] == true) { num_open += 1; vertex_frontier.push(neighbours[i]); } num+=1; } } num_open_edges += num_open; num_closed_edges += (num-num_open); visited+=1; } return make_tuple(visited,num_open_edges,num_closed_edges); } class Compare { public: bool operator() (VVertex& v1, VVertex& v2) { return get<0>(v1)>get<0>(v2); } }; vector invasion_percolation(int n) { int max_t = ceil(4*log(float(n)/100)/log(2))+1; //std::cout< rec_vals(max_t); for (int i=0;i> visited_vertices; visited_vertices.reserve(n+1); visited_vertices.insert(initial_vertex); vector frontier_edges = vertex_neighbours(initial_vertex); int s = frontier_edges.size(); vector frontier_values = rand_uniform(s); //vector frontier_values{0.13944587, 0.90309675, 0.62820165, 0.47304682}; priority_queue, Compare> frontier; //std::set frontier; for (int i=0;i visited_numbers; visited_numbers.reserve(max_t); int visited_number_running = 4; vector random = rand_uniform(6+5*n); double current_marker = 1; int visited = 0; while(visited0 && visited%1000000==0) { auto it=frontier.lower_bound(make_tuple(current_marker,0,0)); frontier.erase(it,frontier.end()); }*/ visited+=1; VVertex currentE = frontier.top(); Vertex current = make_tuple(get<1>(currentE),get<2>(currentE)); frontier.pop(); //current_marker=1; //H2 and H1 current_marker = (double)visited/(double)visited_number_running+2.2221*pow(visited,-0.382); if (visited_vertices.find(current) != visited_vertices.end()) { if (visited==rec_vals[rec_index]) { rec_index+=1; visited_numbers.push_back(visited_number_running); } continue; } visited_vertices.insert(current); vector neighbours = vertex_neighbours(current); int init = 6+(visited-1)*5; int num_n_v = 0; short ss = neighbours.size(); for (int i=0;i(nb),get<1>(nb)); } } } visited_number_running += num_n_v; if(visited==rec_vals[rec_index]) { rec_index+=1; visited_numbers.push_back(visited_number_running); } } return visited_numbers; } // RUN LEATH ALGORITHM // 1. n = max distance/number of steps (depending on TERM) // 2. p = percolation probability // 3. N = number of samples // 4. filename = output path #if RUN == 1 int main(int argc, char** argv) { int n = stoi(argv[1]); double p = stod(argv[2]); int N = stoi(argv[3]); string filename = argv[4]; std::cout << "n="<> file_results(num_this_file); for (int w=0; w results; results.reserve((ceil(4*log(float(n)/100)/log(2))+1)* num_runs_this_file); for (int i=0;i visited_numbers = invasion_percolation(n); copy (visited_numbers.begin(), visited_numbers.end(),back_inserter(results)); } write_to_file(results,filename+"/f"+to_string(j)); } std::cout << "done\n"; } #endif