EN.535.742 — Applied Machine Learning for Mechanical Engineers
Final Report - Zhang, Kanashiro, Stickney

a. A description of each nine steps, their results, figures, and tables.

1. For step 1, all data points with the property 'Age (day)' equal to 28 were isolated. As expected, this resulted in a
total of 425 data points, with each individual data point consisting of 8 values, where 7 values are inputs and 1 value
is the output.

2. For step 2, the data was preprocessed to make it ready for the machine learning model. Because all available data
will be used as training data, no train-test split was required. Preprocessing only consisted of getting data keys,
separating the data into inputs (the first 7 columns) and outputs (the last column), and then scaling those inputs and
outputs between 0 and 1.

3. In step 3, the first deep neural network was created. This network has 7 inputs, four hidden layers with 64, 32, 16,
and 8 hidden neurons (all with ReLU activations), and one output (Linear activation). The network was trained with
the full set of 425 data points that were isolated in step 1, for 1000 epochs. The epoch vs. loss plot is shown below
(Figure 1). From this figure, we can see that the training and validation loss values remain similar, so the network is
not overfitted. A plot of the training data vs. estimated values is also provided for data in the calibrated domain
(Figure 2). We can see that the data is clustered around the bisector line, showing that the estimated values align well
with the actual values.
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Figure 1: Epoch vs. Loss Plot for Training and Validation
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Figure 2: Training vs. Estimated Values on the Calibrated domain

4. In step 4, a GAN model was developed and trained using the 425 input data points from step 1. The discriminator
neural network was created with 7 inputs, one for each of the variables being used as input data for the overall
problem. The hidden layers had 32, 16, and 8 neurons, with one output. The hidden layers used Relu activation and
the output used a sigmoid activation function, as specified.
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Discriminator
$5533555555555555555S58$S
Model: "sequential 2"

Layer (type) Output Shape Param #
dense 10 (Dense) (None, 32) 256
dense 11 (Dense) (None, 16) 528
dense 12 (Dense) (None, 8) 136
dense 13 (Dense) (None, 1) 9

Total params: 929
Trainable params: 0
Non-trainable params: 929

The generator was also created with 3 hidden layers. The number of neurons in each layer was chosen to be 8, 16,
and 32 neurons, corresponding with the number of neurons in the discriminator. Relu activation functions were also
used for the hidden layers because it ensures all values will remain positive, and a sigmoid activation function was
used for the output layer to ensure all output values were between 0 and 1, like the calibrated data that was used as



an input to the GAN. The generator was defined with 7 outputs, corresponding to the number of inputs in this

problem.
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Generator

AR MR MR MR
Model: "sequential 3"

Layer (type) Output Shape Param #
dense 14 (Dense) (None, 8) 264
dense 15 (Dense) (None, 16) 144
dense 16 (Dense) (None, 32) 544
dense 17 (Dense) (None, 7) 231

Total params: 1,183
Trainable params: 1,183
Non-trainable params: 0

Once the discriminator and generator had been developed, they were combined into a single GAN model and trained
using the 425 input data points. Initially, the number of training epochs was set to 500, and the batch size was set to
5. However, when the full 500 epochs were attempted, the model couldn't complete training due to the RAM
limitations of Google Colab. To try to address the problem, the number of parameters in the generator was reduced,
but this did not affect the RAM use enough to complete a full 500 epochs. Ultimately, to solve the problem the
model was trained for 100 epochs with the originally selected number of parameters. The printed summary of the

full model is provided below.
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GAN
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Model: "sequential 4"

Layer (type) Output Shape Param #
sequential 3 (Sequential) (None, 7) 1183
sequential 2 (Sequential) (None, 1) 929

Total params: 2,112
Trainable params: 1,183
Non-trainable params: 929



5. In step 5, the trained model from step 4 was used to generate an additional 575 sets of input data (where each set
has 7 values). This was achieved by calling the generator portion of the trained model to generate 575 points. These
575 points were then used as inputs to the neural network from step 3, which estimated what the output values
would be for each point. Five sample points of the provided data and five sample points of the generated inputs and
predicted outputs are provided below. All values are between 0 and 1, as expected since the calibrated input data was
used.

Table I: Sample data points, Provided and Generated/Estimated data

Inputs Output
1 2 3 4 5 6 7
Provided 1 0 0 0.32108626 0.07763975 0.69476744 0.20572002 0.97595957
Data
1 0 0 0.32108626 0.07763975 0.73837209 0.20572002 0.72872558
0.6347032 0.26432944 0 0.84824281 0 0.38081395 0 0.38123207
0.37442922 0.31719533 0 0.84824281 0 0.38081395 0.19066734 0.50962983
0.85159817 0 0 0.84824281 0 0.38081395 | 0 0.42002459
Generated 2.36E-01 1.48E-02 9.45E-01 3.75E-01 4.34E-02 5.06E-03 7.55E-01 0.32103917
/Estimated
Data 3.35E-01 1.54E-01 7.64E-01 4.68E-01 3.25E-01 2.03E-01 5.96E-01 0.42710203
2.89E-01 1.08E-01 8.48E-01 4.43E-01 3.38E-01 1.54E-01 6.33E-01 0.419897
3.43E-01 1.31E-01 8.29E-01 4.74E-01 3.26E-01 1.70E-01 6.41E-01 0.46370926
9.04E-01 9.09E-04 3.83E-05 9.38E-01 2.70E-05 9.31E-01 1.05E-01 0.46370926

6. In step 6 we defined the appropriate RTT and RRS, and we used the data created in step 5 to train the model. The
function "fun_data" breaks the data that will go into the deep neural network into the appropriate length as defined
by the RRS. A "fun_deep function" was created were a deep neural network with an epoch of 1000, and a validation
split of 0.1. A dropout layer of 0.4 was added to prevent overfitting.



RTT 0.1 | RRS 001
mse_tr - mse_te
0.015393142622993506-0.01445387920011553

Model Loss

0.14 4

. —— Training Loss
0.12 1 Validation_Loss

0.10 4

0.08 1

Loss

0.06 1

0.04 4

0.02 7

0.00 4

T T T T T
0 200 400 600 800 1000

Ilteration Number

Figure 3: Epoch vs. Loss Plot for both validation and training loss
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Figure 4: Training vs. Estimated Values on the Calibrated Domain



RTT 0.1 | RRS 002
mse_tr - mse_te
0.002151354846225678-0.004144591401371258

Model Loss
0.200 —— Training Loss
Validation Loss
0.175 -
0.150 4
0.125 4 l
[7)]
3 0.100 A
8¢ '
0.075 1

0.050 A l
0.025 A K\'

0.000 A

T T T T T T
Y] 200 400 600 800 1000

Iteration Number

Figure 5: Epoch vs. Loss Plot for both validation and training loss
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Figure 6: Training vs. Estimated Values on the Calibrated Domain
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Figure 7: Epoch vs. Loss Plot for both validation and training loss
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Figure 8: Training vs. Estimated Values on the Calibrated Domain
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Most of the Epoch vs. Loss Plot appears to be well fitted, nevertheless, Figure 7 shows a gap between the validation
and training loss and it appears that those two lines will not converge. This suggests that the model is under fitted for
this specific RTT 0.1 and RRS 003. For the Training vs. Estimated Value graphs, all showed that the estimated data
fits nicely with the real data. The output points are around the bisector, and while some deviate more than others, in
general they maintain the same trend.

7. In step 7 we created a combinatory run that looks for the best combination of inputs while making sure that water,
cement, and one of the three additives are part of the best combination.
This was the report and top 10% selection rates that this process yielded:

Best Combinations and Their Corresponding Accuracies

Cement Blast Furnace Slag Fly Ash Water \
DNN Training 1 0 1 1
DNN Testing 1 0 1 1
Superplasticizer Coarse Aggregate Fine Aggregate \
DNN Training 0 1 1
DNN Testing 0

Accuracy Training Accuracy Testing
DNN Training 0.057742 0.062579
DNN Testing 0.062579 0.057742
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Figure 9. Combination vs Selection rate % based on the DNN model.



The best combination display is defined as follows: [ True, False, True, True, False,
True, True])where water and cement are present as well as at least one of the three additives. The accuracy

was measured by finding the lowest MSE for training and testing. We choose to use MSE since this is a regression
problem.

8. In step 8, we took the best combination and used that to pick the proper columns from our initial data (1000
points), and we used the same dataou that was previously used in step 6.
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Figure 10: Epoch vs. Loss Plot for both validation and training loss



Real VS Estimated | Testing

ol - Output Point //'
---- Bisector e
PRI
4
s~
T
0.5 4 LA
A
0 A
= »
E 0.0 1 /’
- — ’Il
- r'd
v K
td
I
0.5 A ,’/
4
’I
4
’I
,
rd
—1.0 1 ///
4
—II.D —CII.S 0:0 O:S l:()
Real

Figure 11: Training vs. Estimated Values on the Calibrated Domain
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Figure 12: Epoch vs. Loss Plot for both validation and training loss
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Figure 13: Training vs. Estimated Values on the Calibrated Domain
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Figure 14: Epoch vs. Loss Plot for both validation and training loss
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Figure 15: Training vs. Estimated Values on the Calibrated Domain

Most of the Epoch vs. Loss Plots appear to be well-fitted, nevertheless, Figure 12 shows a gap between the
validation and training loss and it appears that those two lines will not converge. This suggests that the model is
under fitted for this specific RTT 0.1 and RRS 002. Something similar happened in step 6 with Figure 7. Something
interesting is that this new model shows a better fit for RTT 0.1 RRS 003 (Figure 7 vs Figure 14). Finding the best
combination of inputs in step 7 seemed to improve the model when it was re-run. The Training vs. Estimated Value
graphs all showed that the estimated data follow the general trend of the bisector.

9. In step 9 we use the minimization function from the Scipy library to minimize the ratio of mix weight to 28-day
compressive strength of the concrete mixture. In the objective function, we bring in a NumPy array of 7 values
which represent calibrated input data for the trained model in step 8. The trained model from step 8 only accepts 5
inputs as it has been created and trained on only the best combination of data. This set of data does not include blast
furnace slag or coarse aggregate. The first step in the objective function is to create a new vector with only the 5
inputs that we care about using in the trained model. We then pass this input vector to the trained model from step 8
and get back a calibrated value for compressive strength. We then uncalibrated both the compressive strength and
the original input vector with all 7 values. With the uncalibrated input vector, we take the sum of the values which
gives us the weight of the concrete mixture. We then calculate the ratio of weight to compressive strength. The
constraints for this are that weight must be equal to or between 2300 and 2500 kg/m* and the ratio of water to
cement must be equal to or between 0.48 and 0.59. These constraints were added to the minimization function call
as a list of 4 constraint functions. Each of these represents a single inequality of the four above. In each, the input
vector is uncalibrated and then compared against the respective inequality or for the ratio, calculated and then
compared against the inequality. The bounds are that all elements in the input vector must be between 0 and 1 and
the initial input vector is generated randomly. The solution vector X in the calibrated and uncalibrated domain as
well as the final ratio are shown below:

Cement (component | Blast Furnace Slag | Fly Ash (component | Water (component Superplasticizer Coarse Aggregate Fine Aggregate
1)(kgin a m*3 (component 2)(kgina 3)(kginam"3 4)(kgina ma3 (component 5){kg in a|[(component 6)(kg in a|(component 7)(kg in a. Weight/Compressive
mixture) mA3 mixture) mixture) mixture) m*3 mixture) m#3 mixture) m#3 mixture) Strength
Calibrated 0.74579000 0.14646000 0.00000053 0.67121660 0.88598000 0.11316000 0.37735600 21.5015
Uncalibrated 428.66 52.637000 0.000107 205.83 28.528000 839.93 744.41




Discussions:

b. A paragraph (3-4 lines) or more to answer this question: our problem is a "maximization'" problem. Hence,
we proposed our objective function to compute mix weight 28—day compressive strength and by minimizing it,
we are maximizing 28—day compressive strength mix weight. Was that a good strategy? What other objective
functions could we define?

This strategy does work, however, it is not the only objective function we could have used. This also pushes us to
minimize the weight of the materials and also maximize the compressive strength. It could push us to a result that is
both light in weight and also strong, but perhaps not the strongest value. Other objective functions could just limit
the weight of particular materials and maximize the compressive strength. Or we could cap the total weight and
maximize the compressive strength of the final product.

c. A paragraph (minimum four lines) or more to answer this question: In steps 4 and 5, instead of GAN,
would that be OK to generate our 575 new calibrated input data points randomly, where each input has a
value between 0 and 1? What if our data were images?

It wouldn’t be good practice to generate the 575 new points randomly. This could potentially skew the training of
the neural network to predict incorrect or impossible compressive strength values for the given input data. The same
is true for data for images. If data were generated randomly for pixels, the pixels would distort the image and it is
unlikely that the data would represent what the user is trying to train their model to recognize. This could work if
the user only wants data for the model to test against and prove that the image is discarded, but not to train against.

d. A paragraph (minimum four lines) or more to answer this question: Would our optimization answer be
more reliable if we had only used the initial 425 data points to train a model in step 8 rather than 1000 data
points? Why?

The optimization answer would not be more reliable if we only used 425 data points rather than 1000. Using the
1000 data points is superior to the 425 data points by themselves as long as the GAN is properly trained and
produces realistic data. Having more data is helpful for training and testing neural networks as long as the network
has the depth and the users have the time required to train a higher-fidelity model. If we have less data, we have less
variety to train the model against. We can train the model on the same set of data for more RRSs, but if we do that
for too many iterations we will run into overfitting. More data allows us to train the model over more iterations
without the risk of overfitting.

e. A paragraph (minimum four lines) or more to answer this question: In the combinatory model, we used a
DNN with a simple architecture to be trained for a few epochs to manage our computer intensity on Google
Colab. In our combinatory model, if we had to use a neural network configuration similar to the one in step 6,
and with 5 RTTS and RRS = 50, how would you distribute your computation load on multiple nodes and
cores on MARCC?

If we could run this on MARCC we could use enough nodes to compute each RTT-RRS independently. There are
many ways to do this, but one way could be to use 25 nodes, each running 10 cores. This would allow each RTT
and RRS to run on a separate core and could potentially decrease the time to run by 250 times. If fewer nodes are
available, then we could distribute our RTTs and RRSs across 20 nodes using 12 cores each with one additional node
using only 10 cores. If we do not have enough access to run each RTT and RRSs at once, we could distribute
batches of RTTs and RRSs across the nodes and cores we have available.



f. A paragraph (minimum four lines) or more to answer this question: How can we validate our optimization
solution's estimated objective value?

The best way to validate the prediction would be to build a test block of this concrete mixture, however, that could
be timely and costly. The next best way to validate the optimization problem is to investigate the values that the
optimizer is trying to solve. One good indicator is that the total weight of the value our optimizer found is almost
exactly 2300 kg/m?, which is right up against the lower limit. From that, we can already tell that the solution is
trying to minimize the ratio of weight to strength. The next step is to check if the solution is maximizing the
compressive strength value. For that, we could take all of the data across our 1000 data points and sift for data
points that fall within the constraints of our minimization problem. Next, we can compare the compressive strength
of those data points to the data point found by the optimization function. Next would be to check the ratio of weight
to compressive strength for all data points within our constraints that are in our data set. We want to make sure that
the optimizer isn't just maximizing the strength or minimizing the weight but looking for the best of both. A good
way to see if that is the case is to plot the iterations of the optimization function as it seeks a solution. It should be
clear to see that the ratio of weight to strength is what is targeted, not just one or the other. Finally, I would plot all
data points that exist within our constraints and their respective ratios and confirm that our optimization value falls
to near the minimum.



