LMIA / deepwalk / deepwalk_pytorch / __main__.py
__main__.py
Raw
#! /usr/bin/env python
# -*- coding: utf-8 -*-

import os
import sys
import random
from io import open
from argparse import ArgumentParser, FileType, ArgumentDefaultsHelpFormatter
from collections import Counter
from concurrent.futures import ProcessPoolExecutor
import logging
import time
import pdb

from . import graph
from . import walks as serialized_walks
#from gensim.models import Word2Vec
#from .skipgram import Skipgram
from .word2vec import ModWord2Vec

from six import text_type as unicode
from six import iteritems
from six.moves import range

import psutil
from multiprocessing import cpu_count

p = psutil.Process(os.getpid())
try:
    p.set_cpu_affinity(list(range(cpu_count())))
except AttributeError:
    try:
        p.cpu_affinity(list(range(cpu_count())))
    except AttributeError:
        pass

logger = logging.getLogger(__name__)
LOGFORMAT = "%(asctime).19s %(levelname)s %(filename)s: %(lineno)s %(message)s"


def debug(type_, value, tb):
  if hasattr(sys, 'ps1') or not sys.stderr.isatty():
    sys.__excepthook__(type_, value, tb)
  else:
    import traceback
    import pdb
    traceback.print_exception(type_, value, tb)
    print(u"\n")
    pdb.pm()


def process(args):

  global begin

  if args.format == "adjlist":
    G = graph.load_adjacencylist(args.input, undirected=args.undirected)
  elif args.format == "edgelist":
    G = graph.load_edgelist(args.input, undirected=args.undirected)
  elif args.format == "mat":
    G = graph.load_matfile(args.input, variable_name=args.matfile_variable_name, undirected=args.undirected)
  else:
    raise Exception("Unknown file format: '%s'.  Valid formats: 'adjlist', 'edgelist', 'mat'" % args.format)

  print("Number of nodes: {}".format(len(G.nodes())))

  num_walks = len(G.nodes()) * args.number_walks

  print("Number of walks: {}".format(num_walks))

  data_size = num_walks * args.walk_length

  print("Data size (walks*length): {}".format(data_size))

  print("Walking...")
  walks = graph.build_deepwalk_corpus(G, num_paths=args.number_walks,
                                      path_length=args.walk_length, alpha=0, rand=random.Random(args.seed))
  print("Training...")
  model = ModWord2Vec(walks, size=args.representation_size, window=args.window_size, min_count=0, sg=1, hs=1, workers=args.workers, compute_loss=True)
  model.save_emb(args.output, len(G.nodes()))
  


def main():
  parser = ArgumentParser("deepwalk",
                          formatter_class=ArgumentDefaultsHelpFormatter,
                          conflict_handler='resolve')

  parser.add_argument("--debug", dest="debug", action='store_true', default=False,
                      help="drop a debugger if an exception is raised.")

  parser.add_argument('--format', default='adjlist',
                      help='File format of input file')

  parser.add_argument('--input', nargs='?', required=True,
                      help='Input graph file')

  parser.add_argument("-l", "--log", dest="log", default="INFO",
                      help="log verbosity level")

  parser.add_argument('--matfile-variable-name', default='network',
                      help='variable name of adjacency matrix inside a .mat file.')

  parser.add_argument('--max-memory-data-size', default=1000000000, type=int,
                      help='Size to start dumping walks to disk, instead of keeping them in memory.')

  parser.add_argument('--number-walks', default=10, type=int,
                      help='Number of random walks to start at each node')

  parser.add_argument('--output', required=True,
                      help='Output representation file')

  parser.add_argument('--representation-size', default=64, type=int,
                      help='Number of latent dimensions to learn for each node.')

  parser.add_argument('--seed', default=0, type=int,
                      help='Seed for random walk generator.')

  parser.add_argument('--undirected', default=True, type=bool,
                      help='Treat graph as undirected.')

  parser.add_argument('--vertex-freq-degree', default=False, action='store_true',
                      help='Use vertex degree to estimate the frequency of nodes '
                           'in the random walks. This option is faster than '
                           'calculating the vocabulary.')

  parser.add_argument('--walk-length', default=40, type=int,
                      help='Length of the random walk started at each node')

  parser.add_argument('--window-size', default=5, type=int,
                      help='Window size of skipgram model.')

  parser.add_argument('--workers', default=1, type=int,
                      help='Number of parallel processes.')


  args = parser.parse_args()
  numeric_level = getattr(logging, args.log.upper(), None)
  logging.basicConfig(format=LOGFORMAT)
  logger.setLevel(numeric_level)

  if args.debug:
   sys.excepthook = debug

  process(args)

if __name__ == "__main__":
  sys.exit(main())