#### REQUIRED LIBRARIES #### library(dplyr) library(ggplot2) library(lme4) library(AICcmodavg) #### CUSTOM FUNCTIONS #### #### LOAD DATA #### #load site data nf4_2011 <- read.csv("../data_by_site/NF4-2011.csv") nf1_2003 <- read.csv("../data_by_site/NF1-2003.csv") nf2 <- read.csv("../data_by_site/NF2.csv") mf1 <- read.csv("../data_by_site/MF1.csv") mf2 <- read.csv("../data_by_site/MF2.csv") nf6_2011 <- read.csv("../data_by_site/NF6-2011.csv") p1 <- read.csv("../data_by_site/P1.csv") p2 <- read.csv("../data_by_site/P2.csv") nf3nf5_2008 <- read.csv("../data_by_site/NF3NF5-2008.csv") #nf7ab_2008 <- read.csv("../data_by_site/NF7AB-2008.csv") #combine into single data object dat <- rbind(nf4_2011, nf1_2003, nf2, mf1, mf2, nf6_2011, p1, p2, nf3nf5_2008) codes <- read.csv("../data_by_site/CODES.csv") #### PROCESS DATA #### #convert date to date format dat$date <- as.Date(dat$date, format = "%d-%b-%y") #convert year planted to factor dat$year_planted <- as.factor(dat$year_planted) #fix 2 NA values for year in LC NF2 dat$year_planted[is.na(dat$year_planted)] <- "2003" levels(dat$year_planted) <- c("0", "2011", "2008", "2003", "old") dat_close <- dat[dat$dist == "<25",] dat_join <- dat_close %>% inner_join(., codes, by = "species") combineMigCats <- Vectorize(vectorize.args = "x", FUN = function(x) { switch(as.character(x), "altitudinal" = "mig", "long-distance" = "mig", "short-distance" = "mig", "nomadic" = "nomadic", "resident" = "res", "NA" = NA)}) dat_join$mig_code <- unlist(comineMigCats(x = dat_join$mig_guild)) mod1_counts <- dat_join %>% group_by(transect, year_planted) %>% count(date) f0 <- lmer(n ~ 1 + (1|date), data = mod1_counts) f1 <- lmer(n ~ year_planted + (1|date), data = mod1_counts) aictab(list("dot" = f0, "succession" = f1)) summary(f1) AIC(f0) AIC(f1) #### ANALYZE DATA #### #break down mean counts per mig guild mig_counts <-dat_join %>% group_by(transect, year_planted, mig_code) %>% count(date) %>% summarise(m_count = mean(n), se = sd(n)/length(n)) #break down mean counts per mig guild guild_counts <-dat_join %>% group_by(transect, year_planted, feed_guild.y) %>% count(date) %>% summarise(m_count = mean(n), se = sd(n)/length(n)) #break down mean counts per mig guild iucn_counts <-dat_join %>% group_by(transect, year_planted, IUCN) %>% count(date) %>% summarise(m_count = mean(n), se = sd(n)/length(n)) #mean counts per transect tot_counts <-dat_join %>% group_by(transect, year_planted) %>% count(date) %>% summarise(m_count = mean(n), se = sd(n)/length(n)) ggplot(mig_counts) + geom_bar(aes(x=year_planted, fill = mig_code), position = "fill") ggplot(guild_counts) + geom_bar(aes(x=year_planted, fill = feed_guild.y), position = "fill") ggplot(iucn_counts) + geom_bar(aes(x=year_planted, fill = IUCN), position = "fill") ggplot(tot_counts) + geom_pointrange(aes(x = year_planted, y = m_count, ymin = m_count-se, ymax = m_count+se))