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ABSTRACT
A successful campaign should be able to attract investment from

the brand, and meanwhile manage the conflicting interests in the

campaign cost between the brand and the influencers. As such, the
agency between these two stakeholders plays a vital role. Moti-

vated by the above, we stand in the agency’s shoes to formulate an

interesting yet practical problem, namely Profit Divergence Mini-
mization in Investment-Persuasive Influencer Marketing Campaign
(PDMIC). This problem aims to (i) minimize the divergence of the
actual hiring prices from the asking prices of the influencers and

meanwhile (ii) maintain the attractiveness of the pricing scheme

for the influencers to the brand. We show that the PDMIC prob-

lem is NP-hard. To mitigate the challenge of the extremely large

searching space of the hiring prices of the influencers, we solve

this problem by firstly considering a restrictive searching sub-space
and then gradually expanding the searching sub-space to the whole

space in the end (specifically, from binary price choices to a set of

integer prices and then to any price in the feasible price range). We

propose effective yet efficient (approximate) algorithms for solving

the problem in each of these settings. Extensive experiments on

real-world datasets demonstrate the superiority of our methods.
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1 INTRODUCTION
Influencer marketing, which involves collaborations among the

brand, the agency and online influencers to market products, has

now become a mainstream form of online marketing and is fore-

cast to notch $15 billion by the end of 2022 [12]. Figure 1 depicts

a general workflow of initiating a marketing campaign in influ-

encer marketing platforms such as SocialPubli [7] and Fourth Floor

Creative [19]. Given a budget offered by the brand (in Step 1 of

Figure 1), the agency first finds candidate influencers and collects

the asking prices (in Step 2). Then in Step 3, the agency makes

appropriate prices for hiring (some of) these influencers, returns

the individual hiring price to each influencer, and returns the whole

pricing scheme to the brand. Finally, the two stakeholders respond

to the plan (in Step 4).
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Figure 1: The business model of influencer marketing

Due to its importance and great usefulness, influencer marketing

has received considerable attention in the field with different fo-

cus [30, 32, 55, 57, 60, 63]. While significant efforts have been paid

to help the agency find suitable influencers for the brand (in Step 2)

based on influencers’ asking prices, existing studies on influencer

selection barely consider whether the asking prices of the returned

influencers as the final hiring prices are acceptable to the brand.

To see this, let us take the Influence Maximization (IM) problem

as an example. In the IM problem, the goal is to hire a seed set of
candidate influencers within the given budget from the brand to

maximize the overall influence. In this setting, the seed set is found

based on influencers’ asking prices which are assumed to be the

final hiring prices and unconditionally accepted by the brand.

Unfortunately, we argue that such an assumption is barely true

in real-world influencer marketing campaigns; instead, as we will

elaborate next, in actual campaigns, there inevitably are conflicting

interests – the brand wants a high return of investment whereas

the influencers have high asking prices (i.e., expect high profits).

That explains the nature of Step 3 in reconciling such conflicts,

where the agency tries to rationalize the asking prices and reach

an agreement that hopefully benefits all parties [5].

The Brand’s Point of View. Instead of the abstract notion of in-

fluence, what the brand truly cares about is the Return of Investment
(ROI), i.e., what the brand would get in return from their investment.

As a result, in addition to the influence, the engagement rate of an
influencer matters. Here, the engagement rate is the percentage of

the influence (e.g., the number of followers) of an influencer that

are actually effective (e.g., how many followers are engaged by the

influencer) in a campaign. Therefore, the engagement rate reflects

the actual return to the brand. Interestingly, according to recent

studies [4, 8, 13, 14], influencers with a relatively small influence

often have higher engagement rates than those with high influence.

Taking Twitter as an example, the engagement rate of influencers

with about 10,000 followers is generally 83% higher than that of

the influencers with 100,000+ followers [8]. Therefore, from the

brand’s point of view, hiring 10 influencers each with 10,000 follow-

ers should be a better deal than spending the same cost on hiring

just one influencer with 100,000 followers, simply because the for-

mer deal brings higher engagement rates of those influencers. In

other words, a “big” influencer with great influence would not be
competitive in the market if s/he has a price rate (i.e., price per unit
of influence) more expensive than those “small” influencers with

higher engagement rates [3, 5, 20]. For example, some UK brands
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were willing to pay for those influencers with no more than 10, 000

followers at two times larger price rates than paying celebrities

with ≥ 1M followers [3]. Therefore, for the brand, a campaign plan

is investment-persuasive only if big influencers have no more
expensive price rates than small ones.

The Influencers’ Point of View. For the influencers, high prof-

its are certainly the most important expectation. Therefore, their

asking price rates tend to be close to the high end of their corre-

sponding market price range. As such, the asking prices (which are

visible to the agency only) are generally not investment-persuasive

to the brand when used as the final hiring prices.

The Agency’s Point of View. There is a clear conflict of interests
between the brand and the influencers in the campaign cost. Here,

the agency’s job is to reconcile such a conflict to make the campaign

a deal – the agency needs to decide appropriate hiring prices for
the influencers such that the resulted campaign plan is investment-

persuasive to the brand, and meanwhile satisfies the influencers’

expectations with the best effort.

The Problem to be Solved. Motivated by the above, we play the

role of the agency in campaigns and hope to reconcile the above

conflict by rationalizing prices in Step 3 of Figure 1. Specifically,

we formulate the agency’s job as the problem of Profit Divergence
Minimization in Investment-Persuasive Campaign (PDMIC). Given

a brand’s budget and a set of influencers’ asking prices and influ-

ences, the goal of the PDMIC problem is to make an investment-

persuasive campaign (i.e., a pricing scheme for the influencers) that

canminimize the profit divergence of the influencers. Here, the profit
divergence is defined as the sum of the absolute difference between
the actual hiring price and the asking price of each influencer.

Example 1. In Table 1, the left part lists five candidates, their
influences and asking prices (visible to the agency only), and three
campaigns. Given a total budget of $600, we aim to compute an
investment-persuasive campaign. That is, influencers with the same
influence charge the same price rate (i.e., price per unit of influence),
and the price rate of an influencer with greater influence cannot
be larger than that of an influencer with less influence. Here, both
Campaign 1 and Campaign 2 are investment-persuasive. In Campaign
2, v5 is not hired due to insufficient remaining budget. Campaign 1
achieves a much smaller total profit divergence (i.e., 60 vs. 130) and
is obviously better because it makes the best use of the budget, helps
achieve larger advertisement exposure for the brand and meanwhile
satisfies the profit needs of more influencers with the best effort. On
the other hand, Campaign 3 is not qualified since it is not investment-
persuasive: the influencers v2 to v5 with the same influence are hired
with different price rates. Apparently, Campaign 3 will not be accepted
by the brand that emphasizes return on investment. In this case, the
brand will expect their prices to be $70, which is the lowest hiring
price among them but way below the asking prices of v2, v3 and v4.

Benefits of investment-persuasive campaigns. Aiming at investment-

persuasive campaigns has a number of benefits. First, the investment-

persuasive constraint makes a campaign “value for money” and

hence benefits the brand, who cares about ROI rather than abstract

notion of influence without considering realistic factors (e.g., en-

gagement rate). Second, the objective tries tominimize the deviation

of the actual hiring prices from the influencers’ asking prices, which

Table 1: Three campaign plans. Meaning of the acronyms: C.
for Candidates, Inf. for Influence, Ask. for Asking price ($),
P. for Hiring Price ($), R. for Hiring Price Rate, Dif. for Ab-
solute Difference (i.e., |Ask.–P.|), and Camp. for Campaign.

C. Inf. Ask. Camp. 1 Camp. 2 Camp. 3
P. R. Dif. P. R. Dif. P. R.

v1 200 200 200 1 0 200 1 0 200 1

v2 100 130 100 1 30 130 1.3 0 130 1.3

v3 100 100 100 1 0 130 1.3 30 100 1

v4 100 100 100 1 0 130 1.3 30 100 1

v5 100 70 100 1 30 0 0 70 70 0.7

maintains a good balance between the interests of the brand and

influencers in the hiring costs. Last but not least, it helps maintain

an environment of fair competition in the market. Specifically, the

aim of achieving investment-persuasive campaigns allows us to

detect “speculators” who have much lower asking price rate than

competitors, so as to avoid engrossing the market. Furthermore,

this aim also prevents influencers, who have much higher asking

price rates than competitors, from harming the benefit of the brand.

For instance, in Table 1, the asking price rates (i.e., 1.3 and 0.7) of

v2 and v5 may be unreasonable as they are notably different from

that (i.e., 1) of the majority of their competitors v1, v3 and v4. Thus,

a good investment-persuasive campaign (e.g., Campaign 1) is able

to adjust their actual price rates based on the overall market.

The role of the PDMIC problem. We assume that the candidate influ-

encers have been recommended already in the Step 2 of Figure 1

based on different possible goals (e.g., influence maximization [63]

or regret minimization [30]), and the PDMIC problem focuses on

rationalizing the prices of candidates in the Step 3. Thus, our prob-

lem serves a totally different role from existing candidate selection

problems in the business model.

To summarize, we make the following contributions:

• To our best knowledge, we are the first to comprehensively study

the vital role of the agency that has been oversimplified or over-

looked in previous work. Specifically, we formulate the job of

the agency as the problem of the Profit Divergence Minimization

in Investment-Persuasive Campaigns (PDMIC), which aims to

attract investments while protecting stakeholders’ benefits and

helping maintain an environment of fair competition. (Section 3)

• We prove the NP-hardness of the PDMIC problem. (Section 4)

• As to be discussed in subsequent sections, the challenge of the

problem mainly lies in the extremely large searching space of

the hiring prices for the influencers. As such, we address the

problem by considering a small searching sub-space at first, and

then gradually expanding the searching sub-space to the whole

space in the end. In other words, we consider gradually relaxing

the restriction on the price choices from strict ones to none (i.e.,

no restriction in the end). For solving the problem under these

different settings, we propose effective and efficient algorithms:

– As a first step, we consider the binary-choice restriction, where
each influencer is required to be either hired with a specified

price or unhired with no cost. Under such a restriction, we first

propose an exact dynamic-programming based algorithm. And

then, we show a 2-approximate algorithm which often pro-

duces high-quality solutions (i.e., with low profit divergence)

in our experiments. (Section 5)

2



Managing Conflicting Interests of Stakeholders in Influencer Marketing Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

– Wepropose an exact algorithm under amore relaxed restriction

that the hiring price of each influencer could be chosen from a

specified set of integer prices. (Section 6)

– When no restriction is imposed, that is, we can select any

price, two fast yet effective heuristic algorithms are carefully

designed. (Section 7)

• We propose three interesting metrics for effectiveness evaluation,

which might be useful to future efforts on this topic. Our exten-

sive experiments on real-world datasets show that our ultimate

approximate methods (with no restriction): (i) notably outper-

form the binary-choice based methods in terms of result quality,

and (ii) can even achieve results with better quality than our

exact integer-price-choices algorithm with a sufficiently large

number of integer price choices, and meanwhile achieve up to

eight-orders-of-magnitude speedup. (Section ??)

2 RELATEDWORK
In this section, we give a literature review on influencer marketing

and resource allocation. The literature on influencer marketing can

be divided into two classes: (i) influencer selection optimization

and (ii) pricing scheme optimization. Studies of the first class only

focus on Step 2 in Figure 1, that is selecting influencers based on

their asking prices for specific objectives (e.g., influence maximiza-

tion). Moreover, they never consider whether the asking prices of

selected influencers are acceptable or reasonable to the brand. In

constrast, we focus on Step 3 in Figure 1 and study rationalizing

the prices of the selected influencers. Studies of the second class

are also drastically different from our study, as they either have

different pricing focus (e.g., products) or do not consider the con-
flicts of stakeholders’ interest. Our PDMIC problem is essentially a

useful downstream application of the popular influencer selection

optimization problem and the pricing scheme optimisation prob-

lem in the field. PDMIC is orthogonal to those problems studied

in this line of research, yet the input of PDMIC can be assumed

to be a certain output from influencer selection algorithms as a

pre-processing.

Influencer SelectionOptimization. Influencemaximization aims

to select a limited number of influencers with the greatest influence

spread. There are considerable studies with the goal of improving

the efficiency of influence estimation under different stochastic

diffusion models and improving the influencer selection [27, 31, 33,

35, 39–41, 43, 44, 48, 48, 51, 52, 54, 58, 59, 61–63, 67–70, 76, 78, 79,

84, 85, 87, 89–91]. It provides deep insights on collective behavior

of users in online social network and is of great importance in

understanding influence cascades in viral marketing. This inspires

many subsequent works on different variations. Budgeted influence
maximization [32, 56, 68, 77, 80] considers different prices for hiring
influencers and aims to select a set of influencers with the greatest

influence under limited budgets. Profit maximization [57, 88] aims to

choose a set of influencers who are able to bring themaximum profit

which is calculated by influencers’ influence spread minus the costs

of hiring them. Revenue maximization [29, 55] extends budgeted

influence maximization by maximizing revenue proportional to

influence and considering finding different disjoint seed sets for

different advertisements. Regret minimization [30, 98] aims to select

a set of influencers to minimize difference between the revenue

proportional to the influence brought by the selected influencers

and the budget of the brand.

Pricing Scheme Optimization. Zhu et al. [99] study the problem

of pricing influencers with a totally different objective which aims

to make their prices effectively reflect their unique contributions

to the influence of different seed sets. Therefore, the computed

campaign is not investment-persuasive. In particular, influencers

with the same influence can be assigned with very different hiring

prices and influencers with the greater influence can charge much

higher price rates. Arthur et al. [28] aim to decide the least discounts

of a product to encourage consumption and expect the buyer to

further propagate the product information to other online users.

Chen et al. [42] study how changes of the network structure affect

the discriminatory pricing strategies where companies sell products

with discounts to users with large centrality or influence. Outside

the domain of influencer marketing, there are also many studies

on pricing strategies but with different contexts and targets (e.g.,

query [46, 66], data [36, 72], solutions [38] and crowdsourcing [92]).

Resource Allocation Optimization. It is a very broad line of

research which aims to compute the optimal distributions of re-

sources among competing alternatives in order to maximize the

objective score [21], where the definitions of resources and alter-

natives depend on specific problem contexts. For instance, they

refer to the knapsack space and items, the budget and influencers,

and the budget and locations for deploying facilities in variants of

the knapsack problem [34, 65, 74, 81, 82, 86], the influence max-

imization problem [29, 30, 32, 55, 56, 63, 68, 98] and the location

selection problem [71, 75, 83, 93, 94, 96, 97], respectively. With dif-

ferent contexts, constraints, and objectives, existing studies on these

problems face different challenges and effective solutions require

problem-specific designs. Thus, it is unrealistic to have a single gen-

eral and simple algorithm which fits all problems above. Let us take

the greedy strategy, which iteratively selects an alternative with

the greatest marginal gain to the objective per unit of consumed

resources, for an example. This strategy produces approximate so-

lutions for the classical influence maximization problem [63] but

does not have any theoretical guarantee for the budgeted influence

maximization or the classical knapsack problem. In the latter two

problems, extensions of this greedy strategy are required to have

approximation ratios [1, 32]. However, extensions may not always

be an effective remedy especially in problems with more problem-

specific objectives and constraints. For instance, in the billboard

placement problem [97] where the objective is not submodular, a

specific branch-and-bound method was proposed to solve the prob-

lem exactly since the greedy strategy with any possible extension

will not produce high-quality solutions theoretically.

Therefore, a simple yet general resource allocation strategy with

possible extensions is unlikely to be highly effective in our problem

which has a unique investment-persuasive constraint. To our best

knowledge, there is no resource allocation study that considers such

a constraint. However, for a better connection to existing work in

this field, we propose two greedy based solutions with different

selection criteria in Section 5.2 and Section 7.1 respectively. Despite

that these two extensions achieve promising results in some cases,

they are still notably outperformed by our advanced method with

more problem-specific design (Section 7.2).
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3 PROBLEM FORMULATION
In this paper, we focus on the job of the agency in Step 3 of Figure 1,

that is, the step to design a plan specifying which influencers to be

hired at what costs with respect to the given budget B. Next, we
formulate this problem and frequent notations are in Table 2.

Budget. A budget, denoted by B, is the overall available cost for
hiring influencers in the campaign.

Influencer. An influencer v is a candidate to be hired in the cam-

paign, who is associated with the following three attributes.

Influence. Each influencer v is associated with a positive real num-
ber representing her influence, denoted by δ (v ), which is measured

under certain influence measurement. However, the choice of the
influence measurement is irrelevant to our problem formulation

and the computation of δ (v ) is orthogonal to our problem. And the

choice of the influence measurement is often up to the context of

application scenarios. For example, δ (v ) can be as simple as the
number of followers of v or can be the popular influence notions in

the context of Influence Maximization defined under the indepen-

dent cascade model [50] and the linear threshold model [53].

Asking Price. Each influencerv specifies an asking price pvask visible

to the agency only. The asking price of v is often represented by a

percentage of the budget known to the agency only, e.g., 5% of B.
As a result, for the ease of discussion, we simply consider pvask as

the normalized price with respect to the budget B that v wants to be

hired with. In other words, the sum of the asking prices over all the

influencers is exactly equal to B.

Acceptable Hiring Price Threshold. In addition to the asking price,

each influencer v also specifies a non-negative acceptable hiring
price threshold, denoted by τ (v ) ≥ 0, which is the hiring price

threshold that would be acceptable to v . That means, influencer

v will not take the job if the offered price is smaller than τ (v ). In
particular, τ (v ) = 0 indicates influencer v does not care about the

hiring price as long as it is positive (i.e., > 0). However, v will never

take the job if the offered hiring price is 0: an influencer will never

work for free. Therefore, being offered a 0 hiring price is equivalent

to the case that the corresponding influencer is not hired.

Campaign. Given a budget B and a set F of influencers, i.e., F =
{v1,v2, . . . ,v |F | }, a campaign is a pricing scheme, denoted by P =

[P (v1),P (v2), , . . . ,P (v |F | )], which assigns a hiring price P (v ),
to each influencer v ∈ F such that: (i) P (v ) ≥ τ (v ) if v is hired

to endorse the campaign, or P (v ) = 0 if v is not hired, and (ii)∑
v ∈F P (v ) ≤ B. For the ease of presentation, we directly use h as

vh to refer to the hth influencer in F .

Definition 1 (Profit Divergence of a Campaign). Consider
a campaign P with respect to budget B and influencer set F ; the profit
divergence of P, denoted by DP , is the total absolute difference
between the hiring price and the asking price of each candidate, that
is, DP =

∑
v ∈F |P (v ) − p

v
ask |.

Definition 2 (Investment-Persuasive Campaign). A cam-
paign P is investment-persuasive if the hired influencers with higher
influence have lower hiring price rates, i.e., the hiring price per unit
of influence. Formally, ∀u,v ∈ F , if both u and v are hired, i.e.,

P (v ) , 0 and P (u) , 0, and u has no greater influence than v does,
i.e., δ (u) ≤ δ (v ), then P (v )δ (v ) ≤

P (u )
δ (u ) holds.

To adjust the persuasiveness level of the campaign, we can also

control the scale of difference among the hiring price rates of in-

fluencers with different influences. For example, in the definition

above, we can specify that the hiring price rate ofv must be at least

twice smaller than that of u. Here, we allow the existence of the

equal condition for the ease of presentation, since our theoretical

analysis and methods are orthogonal to the scale of difference.

Definition 3 (Profit Divergence Minimization in Invest-

ment-persuasive Campaigns (PDMIC)). Given a budget B and a
set F of influencers, the goal of PDMIC is to return an investment-
persuasive campaign P∗ with the minimum profit divergence. Math-
ematically, PDMIC can be formulated as the following the problem:

P∗ = arg min

P

DP

subject to:

• (i) normalized asking prices:

∑
v ∈F p

v
ask = B,

• (ii) non-negative hiring prices: P (v ) ≥ 0,∀v ∈ F ,
• (iii) acceptable hiring price thresholds: P (v ) ≥ τ (v ),∀P (v ) > 0,
• (iv) within the budget:

∑
v ∈F P (v ) ≤ B, and

• (v) being investment-persuasive:
P (v )
δ (v ) ≤

P (u )
δ (u ) , for all P (v ) ·

P (u) > 0 ∧ δ (u) ≤ δ (v ).

Application Scenarios beyond Influencer Marketing. In fact,

our investment-persuasive constraint is an implementation of the

tiered pricing model, where prices are offered with different levels

of service or quality [15]. In the tiered pricing model, a higher-tiered

service charges more yet its price rate (i.e., price per value) needs to

be at least as good as a lower-tiered service [22]. Our investment-

persuasive constraint nicely captures this property. As a result, our

PDMIC problem can be directly applied to various pricing scenarios

where the tiered pricing model is considered. Below, we just name

two application scenarios.

Scenario 1: Cloud Service. For instance, when a company wants to

adopt cloud services (e.g., multi-cloud or hybrid cloud services [9,

23] sourced from different vendors) in the cloud computing business,

an SaaS broker is usually involved as a middle man between the

company and a set F of service providers to negotiate a Service Level

Agreement (SLA) [47, 95]. In this case, we can consider that the

buyer has a budget B and each service providerv ∈ F has an asking

price pvask , an acceptable hiring threshold τ (v ) and a value δ (v )

(e.g., storage space and processing speed). To protect the benefits

of the buyer and providers while attracting investments from the

buyer, the broker may want to compute the investment-persuasive

campaign with the minimum profit divergence.

Scenario 2: Material Supply. Similarly, when a company seeks for

certain materials (e.g., carbon fiber, plastic and residue waste), a

material brokerage company [2, 10] often plays an important role

to achieve a win-win solution (i.e., an investment-persuasive cam-

paign) between the buyer and the sellers. In general, one single

seller may not be able to satisfy the need of the buyer company. As

a result, such a solution often contains multiple sellers which have

limited supply of the material with different qualities δ (·).
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Table 2: Frequently used notations
Notation Description

B The campaign budget.

δ (v ) The influence of influencer v .
pvask The asking price of v .

pvask/δ (v ) The asking price rate of v .

τ (v ) The acceptable hiring price threshold of v .
[τ (v ),B] The acceptable hiring price range of v .
P (v ) The hiring price of v in a campaign P.

pv A candidate price for hiring v .

4 HARDNESS AND SOLUTION OVERVIEW
In this section, we first show the NP-hardness of our PDMIC (Defi-

nition 3) and then give an overview of our solutions. More specif-

ically, our NP-hardness proof is a reduction from the Knapsack

Problem [74] to a special input instance of our PDMIC, where for

each influencer v , we have δ (v ) = τ (v ) and pvask ≤ δ (v ).

Lemma 1. For the input instance satisfying: for each influencer
v , δ (v ) = τ (v ) and pvask ≤ δ (v ), the optimal solution P∗ to PDMIC
satisfies: P∗ (v ) = δ (v ) if v is hired, and P∗ (v ) = 0 otherwise.

Proof. Let F ∗ to be set of influencers that are hired by the opti-

mal solution P∗ to this special input instance.

First, according to Constraint (iii) in Definition 3, we know that

P∗ (v ) ≥ τ (v ) for all v ∈ F ∗. Since δ (v ) = τ (v ) and pvask ≤ δ (v ),

we have P∗ (v ) ≥ τ (v ) = δ (v ) ≥ pvask for all v ∈ F ∗.

Second, observe that any pricing scheme P with P (v ) = δ (v ) for
all hired influencersv satisfies the investment-persuasive constraint

(i.e., Constraint (v) in Definition 3); this is because in this case, every

hired influencer has price rate of 1. Moreover, by the definition of

profit divergence (Definition 1) and since P∗ (v ) ≥ δ (v ) ≥ pvask
for all v ∈ F ∗, decreasing the hiring price P∗ (v ) for each v ∈ F ∗

(subject to Constraint (v)) can decrease the profit divergence DP∗ .

Therefore, P∗ (v ) = δ (v ) must hold for each v ∈ F ∗. □

According to Lemma 1, the optimal PDMIC solution to the afore-

mentioned special input instances satisfying P∗ (v ) = δ (v ) if and
only if v is hired. For ease of reference, we formulate a special

case of PDMIC as below and refer it as Binary PDMIC. Note that
the Binary PDMIC is slightly more general than the special input

instance described in Lemma 1. Specifically, we allow δ (v ) ≥ τ (v )
and the constraint pvask ≤ δ (v ) does not necessarily exist.

Definition 4 (Binary PDMIC). Given a budget B, a candidate set
F , the goal is to hire influencers from F under budget B with minimum
divergence score:

minimize

|F |∑
h=1

|xh · ph − p
h
ask | , (1)

subject to: (i)
∑
h∈F p

h
ask = B, (ii) xh ∈ {0, 1}, (iii) ph = δ (h) ≥ τ (v ),

and (iv)
∑ |F |
h=1

xh · ph ≤ B.

Define function f (h,ph ) = ph if phask > ph , and f (h,ph ) =

2phask − ph otherwise. Taking off the absolute operations, Objec-

tive (1) is equivalent to minimize B −
∑ |F |
h=1

xh · f (h,ph ), and hence,
further equivalent to:

maximize

|F |∑
h=1

xh · f (h,ph ) . (2)

Next, we show that Binary PDMIC is NP-hard by a reduction

from the Knapsack Problem [74]. Specially, we will first prove

the NP-hardness of a variation of the Knapsack Problem, called

Knapsack Problems with Value and Capacity Constraints (KPVC) (i.e.,
Definition 6 as below). Then we perform a reduction from KPVC to

the Binary PDMIC.

Definition 5 (Knapsack problem (KP) [74]). Given a set of i
items, each of which has a non-negative weight wh and a value zh
(1 ≤ h ≤ i ), and a bag with capacity B̄, the knapsack problem aims
to choose a subset of items into the bag without exceeding capacity B̄
while maximizing the total value, i.e. maximize

∑i
h=1

xh ·zh , subject
to (i) xh = 1 or 0 and (ii)

∑i
h=1

xh ·wh ≤ B̄.

Definition 6 (Knapsack problem with value and capacity

constraint (KPVC)). The KPVC problem is a special variant of
the KP problem with two extra constraints on the input: (i) Value
Constraint: for each item h (1 ≤ h ≤ i), its value is at most its weight,
i.e., z′h ≤ w ′h , and (ii) Capacity Constraint: the capacity of the bag
satisfies B̄′ = (

∑i
h=1

w ′h + z
′
h )/2.

Lemma 2. The KPVC problem is NP-hard.

Proof. We prove the NP-hardness via reduction from the input

instance for the KP problem to a valid input for the KPVC problem.

Meeting the Value Constraint. Our first step is to modify the above

KP input instance to satisfy the Value Constraint. The crucial idea

is that the KP optimization does not change, when both the item

weights and the bag capacity are scaled by a same positive factor.
Hence, let t = max

i
h=1

zh/wh > 0. We scale the item weightswh to

w ′h = wh · t for 1 ≤ h ≤ i , and the bag capacity B̄ to B̄′ = B̄ · t . It

can be verified that

∑
h wh ≤ B̄ ⇔

∑
h w
′
h ≤ B̄′. Furthermore, by

setting z′h = zh , we have z
′
h = wh ·

zh
wh
≤ wh · t ≤ w ′h for all h’s.

Meeting the Capacity Constraint. Based on the scaled input instance
above, we further strengthen it to meet the Capacity Constraint

(B̄′ = (
∑
h=1

w ′h + z
′
h )/2). There are two possible cases.

Case 1: B̄′ > (
∑
h=1

w ′h + z
′
h )/2. We introduce a “dummy” item

(i + 1) with weight and values as w ′i+1
= 2B̄′ − (

∑i
h=1

w ′h + z
′
h )

and z′i+1
= 0 respectively. This “dummy” item will never be chosen

since its value is 0. As all other items and the capacity remains

the same, an optimal solution to the this KPVC instance is also an

optimal solution to the original KP instance.

Case 2: B̄′ < (
∑
h=1

w ′h + z
′
h )/2. We introduce a “powerful” item

(i + 1) with value and weight as z′i+1
= 1 +

∑i
h=1

z′h and w ′i+1
=

z′i+1
+
∑i
h=1

(w ′h + z′h ) − 2B̄′ > z′i+1
respectively. Moreover, we

set the capacity B̄∗ = B̄′ +w ′i+1
. It can be verified that this super

useful item must be in the optimal solution for the KPVC input

instance under B̄∗. This is because the value of the super useful
item is greater than the value sum of all other items. Excluding this

“powerful” item in the optimal solution of the KPVC input instance

also gives an optimal solution to the original KP input.

Clearly, the above reduction can be perform in polynomial time.

The KPVC problem is thus NP-hard. □

5
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Table 3: Overview of our proposed solutions
Hiring

Price Choices Method Solution Time
Complexity

BC-Exact Exact O ( |F | · B)Binary prices

(Sec 5) BC-MG Approx. O ( |F | log |F |)

A set of integer

prices (Sec 6)

IC-Exact Exact O ( |F |2 |Rmax |
2B)

CR-Inf O ( |F | log |F |)Any price above the

price threshold (Sec 7) CR-MWS

Heuristic

O ( |F |2)

Theorem 1. The Binary PDMIC (Definition 4) problem is NP-hard.

Proof. We reduce KPVC to the Binary PDMIC, by mapping

|F | = i , phask = (w ′h + z
′
h )/2, B = B̄′, and δ (h) = τ (h) = ph = w ′h .

By the Value and Capacity constraint in KPVC, we have phask ≤

ph = δ (h) and
∑ |F |
h=1

phask = B. Based on Expressions (1) and (2), the

objective becomes: maximize

∑ |F |
h=1

xh (2p
h
ask −ph ) =

∑i
h=1

xh · z
′
h ,

which is equivalent to the objective of KPVC. The optimal solution

of this instance of Binary PDMIC implies an optimal solution to the

KPVC input instance. Since the above reduction can be performed

in polynomial time, the Binary PDMIC problem is NP-hard. □

By Lemma 1 and Definition 4, we know that Binary PDMIC is

a special case of PDMIC. Therefore, the corollary below follows

immediately from Theorem 1.

Corollary 2. The PDMIC problem (Definition 3) is NP-hard.

Solution overview. Considering the potentially extreme large

search space of the continuous acceptable price range [τ (·),B],

we tackle the PDMIC problem by incrementally relaxing the restric-

tions on price choices (i.e., from the smallest sub-space to a larger

sub-space and then to the whole space in the end). Specifically, we

start from the binary-price-choices restriction where each influ-

encer can only hired with a fixed price or not hired with zero cost,

and develop the Binary-Choice based Exact method (BC-Exact) and

Binary-Choice and Minimum Gain based method (BC-MG). Then,

we make further relaxation by allowing the price to be selected

from a set of integer choices, and propose the Integer-Choice based
Exact Method (IC-Exact). Finally, we allow the price to be selected

in the continuous acceptable price range (i.e., the whole space),

and propose Continuous-Range and Influence based Method (CR-Inf)

and Continuous-Range and Maximum-Weighted-Subsequence based
Method (CR-MWS). Table 3 summarizes our methods. Note that all

the theoretical claims on any solution’s effectiveness in this paper

are based on the price choices built from the price range [τ (·),B].

5 PDMIC WITH BINARY PRICE CHOICES
In this section, we focus on solving the Binary PDMIC problem

(defined in Definition 4). By Theorem 1, we know that this prob-

lem is NP-hard. Moreover, the proof of Theorem 1 indeed shows

a subtle connection between the Binary PDMIC problem and the

Knapsack problem. Motivated by this, we first adopt the dynamic

programming algorithm for the latter problem to find optimal solu-

tions for the Binary PDMIC. To improve the efficiency, we propose

a greedy method that can produce competitive solutions with a

2-approximate guarantee while achieving significant speedups.

Algorithm 1: BC-Exact
Input :A set F where each candidate v can only be hired with pv = δ (v ) and

has an asking price pvask , and B =
∑
v∈F pvask .

Output :Divergence score.
1 Initialize all entries M of size ( |F | + 1) · (B + 1) with 0;

2 for h = 1 to |F | do
3 for b = 1 to B do
4 if ph ≤ b then
5 score = f (h, ph ) +M[h − 1][b − ph ];

6 M[h][b] = max(score, M[h − 1][b]);
7 else M[h][b] = M[h − 1][b] ;

8 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

9 Compute P by backtracking from M[ |F |][B];

10 return B −M[ |F |][B] ;

5.1 An Exact Method
In this subsection, we present a Binary-Choice based Exact method
called BC-Exact. The basic idea of BC-Exact is to perform dynamic

programming to maintain a matrix M of size ( |F | + 1) × (B + 1),
where each entry M[h][b] (for 1 ≤ h ≤ |F |, 0 ≤ b ≤ B) stores
the optimal value of Objective (2) with respect to a budget b and

considering the first h influencers only. With the budget limit b,
the optimal selections among the first h influencers can only result

from two possibilities depending on whether influencerh is hired or

not. Specifically, if influencer h is not hired, thenM[h][b] = M[h −
1][b]. Otherwise, if h is hired,M[h][b] is equal to f (h,ph ) plus the
maximum value obtained by considering the first h − 1 influencers

with budget limit b −ph , i.e.,M[h][b] = f (h,ph )+M[h− 1][b −ph].

Therefore,M[h][b] can be expressed as the greater objective value

between these two cases, namely,

M[h][b] = max{M[h − 1][b],M[h − 1][b − ph] + f (h,ph )}.

Each entryM[h][b] can be computed by a simple recursion. Once

M[|F |][B] is computed, BC-Exact returns B −M[|F |][B] as the min-

imum divergence.

Note that, if we set the price equal to the influence, the influence

must be an integer to make this approach feasible because the

computation of the index of the second dimension of M is based

on prices. If we use other influence measurements (e.g., influence

spread under the independent cascade model [50]), we can ignore

the fractional part because it is significantly smaller than the integer

part especially for influencers.

Running Time Analysis. While the idea of this dynamic pro-

gramming approach is simple, it requires a pseudo-polynomial time

complexityO ( |F | ·B) to computeM , which is indeed not polynomial

in the problem input size and hence not scalable to large budgets.

5.2 A Minimum Gain based Method
To achieve higher scalability, we propose a Binary-Choice and Min-
imum Gain based method (called BC-MG) which can produce 2-
approximate solutions in only O ( |F | log |F |) time.

Before describing the algorithm,we first rewrite Objective (1). Let

γ = B−
∑ |F |
h=1

f (h,ph ) and X =
∑ |F |
h=1

f (h,ph )−
∑ |F |
h=1

xh · f (h,ph ).

Then Objective (1) can be rewritten as:

minimize γ + X (3)

The basic idea of BC-MG is to approximate the optimal value of

γ + X , denoted as OPTγ+X , with an approximation of the optimal

6
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Algorithm 2: BC-MG

Input :A set F where each candidate v has an asking price pvask and can only

be hired with pv = δ (v ), and B =
∑
v∈F pvask .

Output :Divergence score.
1 Sc = ∅, Bc =

∑
v∈F pv − B , fmin = B ;

2 Sort v ∈ F based on f (v, pv )/pv in non-decreasing order.;

3 foreach v ∈ F do
4 if pv > Bc then
5 if f (v, pv ) < fmin then vmin = v ; fmin = f (v, pv ) ;
6 else
7 if f (v, pv )/pv ≤ fmin/Bc then
8 Sc = Sc ∪ {v }; Bc = Bc − pv ;
9 if Bc = 0 then Break;

10 else Sc = Sc ∪ {vmin }; Bc = 0; Break ;

11 if Bc > 0 then Sc = Sc ∪ {vmin } ;

12 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

13 foreach v ∈ F \ Sc do P (v ) = pv ;

14 γ = B −
∑
v∈F f (v, pv );

15 return γ +
∑
v∈Sc f (v, pv ) ;

value OPTX of X . Observe that minimizing X is equivalent to find-

ing a subset S∗ ⊆ F , whose accumulated f () score (i.e., the second
term in the expression ofX ) is maximized under budgetB. Moreover,

it can be verified that the value of X is essentially the accumulated

f () score of the influencers in the complement set S∗c = F \ S∗ of S∗.
As a result, minimizingX is equivalent to minSc ⊆F

∑
v ∈Sc f (v,pv ),

subject to

∑
v ∈S∗ pv =

∑
v ∈F pv −

∑
v ∈Sc pv ≤ B, and hence, equiv-

alently,

∑
v ∈Sc pv ≥

∑
v ∈F pv − B.

Let Bc be the current available budget; initially, Bc =
∑
v ∈F pv −

B. The basic idea of BC-MG is to iteratively add an influencer u
with the minimum gain per unit price (i.e., f (u,pu )/min{Bc ,pu })
into Sc until the current budget Bc is exhausted (i.e., Bc ≤ 0). A

straightforward approach is to, in each iteration, scan the current

set of remaining influencers, i.e., F \ Sc , and select the influencer

u with smallest f (u,pu )/min{Bc ,pu } into Sc . However, this naive
approach incurs O ( |F |2) time complexity.

Here, we propose a more efficient approach, BC-MG (the pseudo

code is shown in Algorithm 2), which runs in O ( |F | log |F |) time.

The first step of BC-MG is to sort v ∈ F based on f (v,pv )/pv in a

non-decreasing order. Then BC-MG iteratively selects influencers

into Sc according to this order. While this sorted list of the influ-

encers may change with Bc decreasing, a crucial observation is that

the rank of an influencer v will not change until the remaining

budget Bc < pv ; and since then, the rank of v is calculated based

on f (v,pv )/Bc rather than f (v,pv )/pv .
Thus, BC-MG maintains two pieces of information: (i) the sorted

list of influencers with pv ≤ Bc , and (ii) the influencer vmin with

the smallest f () score among those with pv > Bc . In each iteration,

BC-MG just needs to compare the currently visited influencer v in

the sorted list andvmin . If the gain per unit price ofv is smaller than

that of vmin , then add v to Sc and update Bc ← Bc − pv (i.e., Line

8 in Algorithm 2), and maintain vmin with respect to the updated

Bc . Otherwise, add vmin to Sc and terminate the algorithm.

Running TimeAnalysis.Clearly, the time cost of each iteration is

justO (1), and there can be at most |F | iterations. Thus, the time cost

after sorting is bounded byO ( |F |). Putting together with the sorting
cost ofO ( |F | log |F |), the running time is bounded byO ( |F | log |F |).

A 2-Approximation Guarantee. We prove the theoretical guar-

antee (i.e., Theorem 3) with Lemma 3 below:

Lemma 3. Let Sc denote the influencer set chosen by BC-MG with
budget Bc =

∑
v ∈F pv − B. We have

∑
v ∈Sc f (v,pv ) ≤ 2OPTX .

Proof. Suppose all influencers are sorted based on their gain per

unit price in non-decreasing order, instance I is our target instance
where the budget Bc =

∑
v ∈F pv −B, Sc is the influencer set of size

m found by BC-MG and OPTX is the optimal value of X .

Let Sm−1

c denote the set of the firstm − 1 influencers in Sc , and
the budget Bm−1

c be the total price of the firstm−1 influencers. The

accumulated f () score of influencers in Sm−1

c must be minimum

under budget Bm−1

c since the total price is exactly Bm−1

c and influ-

encers are picked based on minimum gain per unit price. Replacing

any influencer in Sm−1

c with one in F \ Sm−1

c will not make the

solution better. Observe that the optimal X value under a smaller

budget cannot be larger and Bm−1

c ≤ Bc . Thus, the accumulated

f () score of influencers in Sm−1

c is at most OPTX .

Let Slastc = Sc \S
m−1

c denote the set containing the last influencer

in Sc . Suppose we have an instance I ′, where the f () score of each
firstm − 1 influencer is 0 and the budget is Bc . In instance I ′, the
optimal solution set must consist of the firstm − 1 influencers and

the influencer in Slastc . It is obvious that the firstm − 1 influencers

must be included as their f () scores are 0. With the remaining

budget, the optimal influencer selection is consistent with BC-MG

and thus, the Slastc must be included in the optimal solution of

instance I ′. Since the accumulated f () score of the optimal solution

in instance I ′ is clearly a lowerbound of OPTX and Slastc must be

a part of the optimal solution, the f () score from Slastc cannot be

greater thanOPTX . Thus, the accumulated f () score of influencers

from Sm−1

c ∪ Slastc = Sc is not greater than 2 ·OPTX . □

Theorem 3. LetOPTγ+X denote the optimal value of Objective (3),
and Sc denote the influencer set chosen by BC-MG under budget
Bc =

∑
v ∈F pv − B. Sc is a 2-approximate solution such that γ +∑

v ∈Sc f (v,pv ) ≤ 2 ·OPTγ+X .

Proof. Based on Lemma 3, we have

∑
v ∈Sc f (v,pv ) ≤ 2 ·OPTX .

Since OPTγ+X = γ + OPTX , we have γ +
∑
v ∈Sc f (v,pv ) ≤ 2 ·

OPTX + γ ≤ 2 · (γ + OPTX ) = 2 · OPTγ+X . Thus, Theorem 3 is

proven. □

6 PDMIC WITH INTEGER PRICE CHOICES
As the binary-choice restriction might be too strict, the practical

result quality of the aforementioned binary-choice algorithms may

not be good enough. In this section, we relax this restriction by

enlarging the search space – the price for hiring an influencerv can

be 0 or chosen from a given set Rv of integers in the corresponding

acceptable price range [τ (v ),B]. For this setting, we propose an

exact algorithm, namely Integer-Choice based Exact Method (IC-

Exact), which is also based on dynamic programming.

The pseudo code of IC-Exact is presented in Algorithm 3. Here,

the price of each influencer v ∈ F can be chosen from the set Rv ,
and we assume that elements in Rv are sorted in ascending order

for ease of presentation. At the beginning, the influencers are sorted

by their influence δ (v ) in a non-decreasing order. The whole idea of
this approach is to compute a matrixM of three dimensions. Next,

we will describe the purpose ofM and then how to computeM .

7
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Algorithm 3: IC-Exact
Input :A set F of candidates where each candidate v has an asking price pvask

and an integer price choice set Rv , and B =
∑
v∈F pvask .

Output :Divergence score.
1 Sort each v ∈ F based on δ (v ) in non-decreasing order;

2 Initialize entries of M with 0 where M[h] has dims. B × |Rh |;
3 for b = 0 to B do
4 foreach p1 ∈ R1 do
5 if p1 ≤ b then M[1][b][p1] = f (1, p1 ) ;
6 for h = 2 to |F | do
7 foreach ph ∈ Rh do
8 for b = ph to B do
9 M[h][b][ph ] = f (h, ph );

10 for j = 1 to h-1 do
11 if δ (j ) = δ (h) and ph ∈ Rj and b − ph ≥ ph then
12 // j must be hired with ph to meet the investment

persuasive constraint, and ph is a feasible price for j
13 M[h][b][ph ] =

max(M[h][b][ph ], M[j][b − ph ][ph ] + f (h, ph ));
14 Continue;

15 foreach pj ∈ Rj do
16 if b − ph < pj then Break;

17 if pj /δ (j ) ≥ ph/δ (h) then
18 M[h][b][ph ] = max(M[h][b][ph ], M[j][b −

pj ][pj ] + f (h, ph ));
19 k, p = arg maxh∈[1, |I |],ph ∈Rh

M[h][B][ph ];

20 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

21 Compute P by backtracking from M[k][B][p];

22 return B −M[k][B][p];

Purpose of matrix M . Each entry M[h][b][ph] records the f ()
score sum of the optimal solution when we only consider hiring

(i) the first h influencers (in the aforementioned sorted list) and

(ii) the h-th influencer with price ph ∈ Rh under budget b. Clearly,
the global optimal solution satisfies these two considerations with

some h, ph and b. Considering that increasing b while fixing h and

ph will not decrease the f () score sum, the global optimal solution

can be found at the largest entry amongM[·][B][·].

Computation of matrixM . If ph ≥ b, the h-th influencer cannot

be hired and thusM[h][b][ph] is set as 0. Otherwise,M[h][b][ph] is

initialized as f (h,ph ) (Lines 5 and 9). It indicates that currently only
influencer h is hired. Thus, we need to find the optimal solution

when we only consider hiring the first h − 1 influencers with the

remaining budget b − ph . Specifically, we need to find the entry

M[j∗][b − ph][pj∗ ] with the greatest value from candidate entries

where each candidate entryM[j][b − ph][pj ] satisfies two require-

ments: (i) j < h and pj ≤ b − ph , and (ii) hiring j with price pj will
not break the investment constraint. That is, pj must be equal to

ph if δ (j ) = δ (h), or pj/δ (j ) ≥ ph/δ (h) otherwise.
Afterwards,M[h][b][ph] = M[h][b][ph]+M[j∗][b−ph][pj∗ ]. To

findM[j∗][b −ph][pj∗ ] and thus compute the finalM[h][b][ph], we

iterate each pair of j and pj (Lines 10 to 18) where Lines 11 and 17

ensure the investment-persuasive, and Lines 13 and 18 ensure that

M[h][b][ph] is correct. After the computation of matrixM , we find

the greatest value among all the entriesM[·][B][·] and subtract this

value from B to obtain an optimal value with respect to Objective (1).

Example 2. Suppose F = {v1,v2} and B = 280, where δ (1) =
100, p1

ask = 80, R1 = {80, 100}, δ (2) = 200, p2

ask = 200 and
R2 = {140, 200}. Then M[1][b][80] = f (1, 80) = 80 (80 ≤ b ≤ B)
and M[1][b][100] = f (1, 100) = 60 (100 ≤ b ≤ B). To compute
M[2][B][140], the highest possible f () score when we have budget B
and hirev2 with $140 as the last influencer, we need to consider hiring

Algorithm 4: CR-Inf
Input :A set F of candidates where each candidate v has an asking price pvask

and the input acceptable price range Rv , and B =
∑
v∈F pvask .

Output :Divergence score.
1 Sort each v ∈ F based on δ (v ) in non-increasing order.;

2 S = ∅, b = B ;
3 Initialize the campaign P where P (v ) = 0, ∀v ∈ F ;
4 foreach v ∈ F do
5 Update Rv ;
6 if Qv = Rv ∩ [0, b] , ∅ then
7 pv = BestPr ice (Qv );
8 P (v ) = pv ; b = b − pv ; S = S ∪ {v };
9 if b = 0 then Break;

10 return B −
∑
v∈S f (v, pv ) ;

v1 while maintaining an investment-persuasive campaign. Thus, the
legit hiring price of v1 can be $80 or $100. Therefore,M[2][B][140] =

f (2, 140) +max (M[1][B − 140][100],M[1][B − 140][80]) = 220. For
M[2][B][200], the only legit price for hiringv1 is $100, which exceeds
the remaining budget 80. Thus,M[2][B][200] = f (2, 200) = 200. By
searching all entriesM[·][B][·],M[2][B][140] = 220 is the maximum
and the optimal divergence is 280 − 220 = 60.

Running Time Analysis. Despite its effectiveness, computing

the matrixM incurs pseudo-polynomial time complexity ofO ( |F |2 ·
|Rmax |

2 · B), where Rmax is the largest price choice set.

7 PDMIC WITH CONTINUOUS PRICE
RANGES

In this section, we further relax the previous restrictions on the

price choices such that we set the hiring price of each influencer

v as 0 or any price in the acceptable price range Rv = [τ (v ),B].

According to the hardness result in Section 4, it is unlikely that

efficient exact algorithms for PDMIC could be found. Next, we

introduce two heuristic algorithms which do not achieve any non-

trivial approximation guarantees but are highly effective in practice,

as confirmed by our experimental results.

7.1 An Influence based Greedy Method
Our first heuristic algorithm is called Continuous-Range and Influ-
ence based Method (CR-Inf), which is a greedy method by prioritiz-

ing the satisfaction of influencers with high influence. The pseudo

code is shown in Algorithm 4. The intuition behind this algorithm

is that influencers with higher influence usually have higher asking

prices. Thus, prioritizing the satisfaction of top influencers will

potentially result in a large contribution to the total f () score.
Suppose we sort all the influencers by their influence in a non-

increasing order and break ties by considering smaller asking prices

first. The basic idea of the CR-Inf algorithm is to iteratively assign a

price to an influencer v based on this order. In each iteration, it up-

dates and maintains Rv for the current candidatev . Specifically, Rv
is initialized as [τ (v ),B] and updated based on the current selected

influencer set S such that any price in Rv for influencerv to be cho-

sen will not violate the criteria of investment-persuasive campaigns

(Line 5). If Qv = Rv ∩ [0,b] , ∅ (i.e., there exists a price for v that

can be chosen without violating either the budget or the investment-

persuasive constraint), it addsv to S , assigns tov the price pv inQv
that is closest to v’s asking price (i.e., minpv ∈Qv |pv − p

v
ask |), and

8
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Algorithm 5:WeightedSubsequenceScore (WSS)

Input :A set F of candidates where each candidate v has an asking price pvask
and the input acceptable price range Rv .

1 Sort each v ∈ F based on δ (v ) in non-increasing order;

2 Initialize M where M[h] = f (h, phask ) = p
h
ask if phask is in Rh ; otherwise,

M[h] = 0;

3 for h = 1 to |F | do
4 for j = 1 to h − 1 do
5 if M[j] + phask > M[h] then
6 if δ (j ) = δ (h) and p jask /δ (j ) = p

h
ask /δ (h) then

7 M[h] = M[j] + phask ;

8 if δ (j ) > δ (h) and p jask /δ (j ) ≤ p
h
ask /δ (h) then

9 M[h] = M[j] + phask ;
10 return M ;

Algorithm 6:WeightedSubsequence (WS)

Input :A set F of candidates, subsequence score matrix M , sequence score s ,
the end index h, the solution set S .

1 if s > 0 then
2 id = h;
3 if id = |F | then
4 while M[id] , s do id = id − 1;

5 else
6 for j = h − 1 to 1 do
7 if M[j] = s then
8 bool1← δ (h) = δ (j ) and phask = p

j
ask ;

9 bool2← δ (h) , δ (j ) and p jask /δ (j ) ≤ p
h
ask /δ (h);

10 if bool1 or bool2 then id = h; Break;
11 pid = pidask ; Add id into S ;
12 WeiдhtedSubsequence (F , M, s − pidask , id, S );

updates b ← b −pv (Lines 6 to 8). This iterative process terminates

when no more influencers could be selected.

Running Time Analysis. Considering that the influencers are

selected with their influence in a non-increasing order. to avoid

violating the investment-persuasive constraint, influencers must

be selected with price rate non-decreasingly. As a result, when an

influencer v is checked, the feasible price range Rv can be easily

calculated inO (1) time by the price rate of the most recent selected

influencer; and Qv is just simply Rv ∩ [0,b]. Therefore, the pro-

cessing cost for checking each influencer is bounded by O (1) and
hence, O ( |F |) in total. Plus the sorting cost at the beginning, the

overall running time is bounded by O ( |F | log |F |).

Limitations. Despite its high efficiency, CR-Inf tends to satisfy

asking prices of top influencers, making it often lack of a global

view. And hence, it may fail to consider the impact brought by the

investment-persuasive constraint. If the price rates of influencers

chosen in S are very high, the price rates of subsequent influencers

must be set higher to ensure the campaign is investment-persuasive.

If the asking prices of subsequent influencers (in the sorted list)

are much lower than the prices that CR-Inf assigns to them, these

influencers will be overly satisfied, and the budget is “wasted”.

The excessive budget spent on these influencers actually brings no

increments to the total f () score. This strategy will cause a domino

effect such that the budget could be “wasted” significantly and thus

many influencers cannot even be hired.

Algorithm 7: CR-MWS

Input :A set F of candidates where each candidate v has an asking price pvask
and the input acceptable price range Rv , and B =

∑
v∈F pvask ..

Output :Divergence score.
1 Sort each v ∈ F based on δ (v ) and then δ (v )/pvask in non-increasing order,

and relabel their IDs from 1 to |F | in this order;

2 S = ∅;
3 M =WeiдhtedSubsequenceScore (F );
4 WeiдhtedSubsequence (F , M, max(M ), |F |, S ) // Obtain an ordered

subsequence S of F that achieves the maximum score max(M ) in M ;

5 Br = B −max(M ); if Br = 0 then return B −
∑
v∈S f (v, pv );

6 l = min(S ), r = max(S ) // Obtain the smallest and largest ID in S ;
7 for h = 1 to l − 1 do ph = δ (h) · plask /δ (l ) ;
8 for h = r + 1 to |F | do ph = δ (h) · prask /δ (r ) ;
9 for j = 1 to |S | − 1 do

10 l = S (j ); r = S (j + 1) // Two consecutive influencers in S ;
11 if r − l < 2 then break; // No segment between l and r ;
12 ub = prask /δ (r ); lb = p

l
ask /δ (l ); preInf = δ (r );

13 for h = (r − 1) to (l + 1) do
14 if lb = ub or δ (h) = δ (l ) then
15 if lb · δ (h) ∈ Rh then ph = lb · δ (h) ;
16 else ph = 0 // h does not have a feasible price range ;

17 Continue;

18 if δ (h) = preInf then
19 if ub · δ (h) ∈ Rh then ph = ub · δ (h) ;
20 else ph = 0 ;

21 Continue;

22 ranдe = [lb ∗ δh, ub ∗ δh ] ∩ Rh ;
23 if ranдe , ∅ then
24 if phask /δ (h) < plask /δ (l ) then ph =min (ranдe ) ;
25 else ph =max (ranдe ) ;
26 ub = ph/δ (h);
27 preInf = δ (h);
28 else ph = 0;

29 F r e = {h |h ∈ F \ S and ph > 0};

30 sort each v ∈ F r e based on f (v, pvask )/pv in descending order;

31 foreach v ∈ F r e do
32 // Select the rest influencers greedily

33 if pv ≤ Br then S = S ∪ {v }; Br = Br − pv ;

34 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

35 foreach v ∈ S do P (v ) = pv ;
36 return B −

∑
v∈S f (v, pv );

7.2 A Weighted-Subsequence based Method
To further improve the effectiveness, we propose a Continuous-
Range and Maximum-Weighted-Subsequence based Method called

(CR-MWS). Observe that the price rate deviation of each influencer

from her asking one can lead to: this influencer being either overly
satisfied or unsatisfied. In the former case, some budgets would be

“wasted”. In the latter case, every unit budget spent on the current

influencer contributes to the increment of the f () score. Thus, we
need to carefully decide the order of satisfying influencers to avoid

notable price deviation and budget “abuse”.

Algorithm 7 describes its overall procedure. The CR-MWS al-

gorithm consists of three steps, namely maximum weighted subse-
quence discovery (Lines 3 to 4), price rate adjustment (Lines 5 to 28)

and candidate finalization (Lines 29 to 35). In step 1, some influ-

encers are hired by paying for their asking prices; in step 2, the

price rates of the remaining influencers are adjusted based on those

hired ones; in step 3, among the remaining influencers, who to be

hired is determined based on the adjusted price rates.

Step 1:Maximum-weighted subsequence discovery. CR-MWS

first sorts influencers by their influence in a non-increasing order.

9
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Next, it finds a subsequence of influencers, selecting whom would

bring the maximum increment of the total f () score without com-

promising the prices from their asking prices while still meeting

the criteria of an investment-persuasive campaign. Such a subse-

quence is called the maximum weighted subsequence (MWS) and

its f () score is computed by our proposed method, called Weighted
Subsequence Score (WSS) (Algorithm 5). Here, influencers in any

subsequence are sorted non-increasingly w.r.t. influence.

Specifically, WSS uses a matrix M to record the results where

M[h] stores the total f () score of the local maximum weighted

subsequence among all qualified weighted subsequences ended

with influencer h. We say a subsequence is qualified if hiring all

influencers in this subsequence with their asking prices does not

violate the investment-persuasive constraint. If phask is in the input

price range, the entry M[h] is initialized as phask ; otherwise, it is

0. If M[h] = phask , it indicates that the local maximum weighted

subsequence ended with h currently only contains influencer h.
To update M[h], we need to append influencer h to a weighted

subsequence which (i) ends with an influencer j ranked before h
(i.e., 1 ≤ j < h), (ii) can include h without breaking the investment-

persuasive constraint, and (iii) has the greatest f () score among

all subsequences satisfying the previous two requirements. Once

we find such an entryM[j], we setM[h] = phask +M[j]. Lines 4-9

in Algorithm 5 describes the process of updating M[h]. After we

update the f () scores for all entries inM , we find the greatest entry

max(M ) which records the f () score of the global MWS.

Afterwards, we propose a backtracking process calledWeight-
edSubsequence (i.e., invoked in Line 4 of Algorithm 7), to retrieve

all influencers in the maximum weighted subsequence based on

max(M ) and store them into the initially empty solution set S . These
influencers are hired with their asking prices.

Step 2: Price rate adjustment. In this step, we adjust the price

rates of the influencers in F \S to ensure the investment-persuasive

constraint if they are hired. Lines 5 to 28 in Algorithm 7 describes

the adjustment process and we describe its details below.

Observe that by removing the influencers in the global maximum-

weighted subsequence S , the influencers in F \ S are divided into

“segments” (in the sorted order). Given that all the influencers in S
are hired, to ensure an investment-persuasive campaign, we adjust

the price rates for the rest influencers in each segment in F \ S as

follows. Let min(S ) and max(S ) be the smallest and largest influ-

encer ID’s in S . Firstly, for each influencer h in the possibly existing

segment [1,min(S ) − 1] ([max(S ) + 1, |F |]), she will be unsatisfied
(overly satisfied) if hired. Thus, we need to set her hiring price as

high (low) as possible, and thus assign her with the same price rate

as the influencer min(S ) (max(S )), as shown in Lines 7 and 8.

Secondly, for each segment [l+1, r−1] defined by two consecutive

influencers l and r in S , we enforce the price rates of the ordered
influencers in this segment to be in non-decreasing order and in the

range of [lb = plask/δ (l ),ub = p
r
ask/δ (r )], where lb and ub denote

the lower and upper bounds of the hiring price rate respectively.

Such non-decreasing price rates can be obtained by deciding the

hiring price for each influencer one-by-one. There are two possible

ways: (i) the forward way: decide the price for l + 1 first and all

the way to r − 1; and (ii) the backward way: decide the price for

r − 1 first and all the way to l + 1. Based on our experimental
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Figure 2: A running example of CR-MWS

results, the backward way is more effective, and hence, we adopt

this direction. Intuitively, the backward way tends to increase the

prices for unsatisfied influencers, as shown later in Example 3.

More specifically, given an influencer h in a segment, we first

compute its qualified price range [lb · δh ,ub · δh] ∩ Rh (Line 22). If

the asking price rate is smaller than plask/δ (l ) (i.e., h will be overly

satisfied if hired), we assign h with the minimum price from the

qualified price range (Line 24). Otherwise, we assign h with the

maximum price (Line 25). Afterwards, update the upper bound ub
to be the hiring price rate of h (Line 26). Besides, there are two edge

cases where we need to decide the prices more carefully. The first

case is when lb = ub or δ (h) = δ (l ), we need to check if h can be

assigned with price lb · δ (h) (i.e., Lines 14 to 17). The second case

is when h has the same influence (i.e., preInf computed in Line 28)

as the influencer most recently assigned with a price, we need to

check if h can be assigned with the same price (i.e., Lines 18 to 21).

Step 3: Candidate finalization. Once CR-MWS adjusts the prices

for hiring the remaining influencers, the third step is to greedily

choose them based on the f () score gain per unit adjusted price

until the budget is exhausted or all remaining influencers have been

processed (Lines 29 to 35 in Algorithm 7).

Example 3. Figure 2 shows the pricing strategy of Algorithm 7
for six influencers. Here, the hiring price threshold τ (v ) = 0 for all
v , budget B = 800, and influencers v4 to v6 have the same influence
and asking price. In Step 1, we need to find the Maximum Weighted
Subsequence (MWS). The subsequence formed by v1 and v2 is not a
qualified candidate because v1 has larger influence but a higher ask-
ing price rate. On the other hand, the subsequence formed by v1 and
v3 is qualified. Among the f () scores of all the qualified subsequences,
M[6] = 500 is the largest. Then, we invoke WeightedSubsequence

(Line 4 of Algorithm 7) to collect those influencers (in the MWS achiev-
ingM[6]) into S . In Step 2, after identifying the MWS, we adjust the
price rates of the remaining influencers (i.e.,v2 andv3) in the segment
defined by v1 and v4 in a backward way. As a result, both v2 and v3

have the same adjusted price rate of 0.4 and adjusted price of $200.
However, due to the remaining budget limit (of $300), only v3 is hired
as it has higher f () score per price unit. Thus, the total f () score is
700 = 500 + 200 contributed by the MWS and v3 respectively.

RunningTimeAnalysis. Sorting the influencers takesO ( |F | log |F |)
time. The first step runs in O ( |F |2) time, and the second and third

step both run in O ( |F |) time. The total time complexity is O ( |F |2).
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Table 4: Data statistics

Dataset User
Size

Total
Degree

Max.
Degree

Avg.
Degree

LastFM 7.6K 55.6K 216 7.29

Dogster 426.8K 17.1M 46.5K 40.0

Flixster 2.5M 15.8M 1.5K 6.3

Orkut 3.1M 234.4M 33.3K 76.3

8 EXPERIMENTS
In this section, we conduct extensive experiments on real-world

datasets to demonstrate the effectiveness and efficiency of our pro-

posedmethods. In Section 8.1, we introduce some interesting evalua-

tion metrics. Then we describe the experimental setup in Section 8.2.

Afterwards, we present the experimental result in Section 8.3.

8.1 Evaluation Metrics
Since there is no prior work on this topic, we carefully design the

evaluation metrics by considering the interests of all stakehold-

ers. We believe these metrics would be useful to future efforts on

this topic. Specifically, we use the Divergence Ratio (D-Ratio)
to evaluate whether a campaign P can maintain a good balance

between conflicting interests of the brand and the influencers on

the cost: D-Ratio = DP/B, where DP refers to the divergence

score of this campaign (see Definition 1) and B is the input budget

from the brand. Observe that the budge B actually also represents

the worst possible profit divergence. The D-ratio measures how

“far” a method’s effectiveness is away from the worst solution.

To evaluate the advertising exposure achieved by a campaign,

we use the Influence Ratio (I-Ratio) to estimate the influence:

I-Ratio = δP/OPTinf ,whereδP =
∑
v ∈F∧P (v )>0

δ (v ) andOPTinf
refers to the optimal influence with the influence maximization

objective
1
. In the influence maximization objective, the cost for

hiring an influencer is the standard price rate times her influence.

Thus, this optimal influence approximates the brand’s estimation

on the ideal advertising exposure effect. For simplicity, we assume

the standard price rate to be 1 since it does not impact the methods’

effectiveness. Thus, to compute the optimal influence, we just set

the f () score of each influencer to be her influence in BC-Exact.

To evaluate whether a campaign is able to bring considerable in-

vestment which impacts the agency’s commission and the number

of potential influencers being involved, we use the Invested Bud-
get Ratio (B-Ratio) to measure the invested budget: B-Ratio =
BP/B, where BP =

∑
v ∈F P (v ) ≤ B. Due to the timeliness of mar-

keting, efficiency is also important. Thus, we report the Running
Time to build a campaign.

8.2 Experimental Setup
Datasets. We use four real-world social network datasets [45]

whose statistics are shown in Table 4. It serves the purpose to

use only the degree of users in each dataset.

Categorization of Influencers. To test the robustness of our

methods to candidate sets with different degrees of distribution,

we coarsely divide influencers into three classes, Macro, Micro and
Nano, with the naming convention in this domain [6]. Specifically,

we order online users in non-increasing order of their degrees, and

1
We assume there is barely influence overlap between influencers found in Step 2

in Figure 1, as it can be easily detected, preprocessed and orthogonal to our study.

then group influencers based on this order into the same tier (i.e.,

Macro, Micro or Nano influencer) if their total degrees constitute

20% of the total degrees in the social network, as shown in Figure 3.

Methods for comparison.
• Binary-Choice based methods, BC-Exact and BC-MG, which can

only hire an influencer with the cost equal to her influence or

not hire her with no cost. Notably, BC-MG is an extension of a

general strategy in resource allocation, as discussed in Section 2.

• Integer-Choice based method IC-Exact which finds the opti-

mal solution when each influencer v is assigned with an in-
teger price choice set Rv . Note that it can also be used as a

near-optimal solution to the PDMIC problem that allows choos-

ing any price in the input acceptable price range if Rv is suf-

ficiently large. Specifically, Rv consists of her influence plus

a number, num, of integer prices evenly dividing the contin-

uous range [0.5 ∗ δ (v ), 1.5 ∗ δ (v )] in a coarse-grained level.

That is, Rv consists of the integers which are floors of floats

in {δ (v ) (0.5 + 1/num),δ (v ) (0.5 + 2/num), . . . , 1.5δ (v )}, where
|Rv | is set as 10 by default. If Rv ⊈ [τ (v ),B], Rv = Rv ∩ [τ (v ),B].

Note that this continuous range to be divided is decided based on

our many testings which show that a greater range with the same

|Rv | will incur much more computational cost without helping

IC-Exact produce better solutions.

• Continuous-Range based methods CR-Inf and CR-MWS which

can choose any price in the acceptable price range [τ (v ),B] to

hire each influencerv . Notably, CR-Inf is an extension of a general
strategy in resource allocation, as discussed in Section 2.

Parameter settings.
• Hiring price thresholds. Considering that the solution space

is heavily impacted by the acceptable price range [τ (·),B] and

our objective is to effectively and efficiently solve the PDMIC

for any instance, we tackle the largest possible search space by

setting the price thresholds of all influencers as 0, which can

reflect the efficiency and accuracy gaps among the methods to

the maximum extent. Furthermore, with this setup, all the inputs

naturally satisfy δ (v ) ≥ τ (v ) = 0 for any candidate influencer

v and hence the restriction (i.e., δ (v ) ≥ τ (v )) of BC-Exact and
BC-MG no longer exists.

• The investment budget. The brand offers a budget to the agency.
The agency will find suitable candidate influencers who have

high alignments with the brand’s product to be promoted, and

whose total influence should match with the budget considering

the standard price rate (i.e., 1 in experiments) in this market [16].

The final budget B is set by a negotiation between the brand and

the agency based on candidates being found.

• The candidate influencers. Here, we assume the candidate set

has been found since this process is orthogonal to our study.

Considering the charges on contracted influencers for agent com-

mission (usually 20% [26]) and that it may not be possible to find

suitable candidates perfectly matched with the budget, we create

the candidate set F by randomly selecting a number of candidates

(|F | = 90 by default) from the aforementioned three tiers of influ-

encers (i.e., Macro, Micro and Nano), and set B as a percentage β
(80% by default) of the total influence of candidates times the stan-

dard price rate (i.e., 1). To show the robustness of our methods to

the combinations of influencers of different categories, we create
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Figure 3: Degree distributions and influencer categorization.
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Figure 4: The divergence ratio comparison. Methods are more effective with lower ratios. (Note: there is no trend to show for
each method when |F | increases since cases are independent. Hence, line chart is not used.)

the candidate set with the following different sampling distribu-

tions: {Macro:0.5, Micro:0.25, Nano:0.25}, {Macro:0.25, Micro:0.5,

Nano:0.25}, {Macro:0.25, Micro:0.25, Nano:0.5}, and {Macro:0.33,

12
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Figure 5: The influence ratio comparison. Methods are more effective with higher ratios. (Note: there is no trend to show for
each method when |F | increases since cases are independent. Hence, line chart is not used.)

Micro:0.33, Nano:0.33}. For simplicity, we call them as Macro-

focused, Micro-focused, Nano-focused and Uniform sampling

distributions, respectively. Due to the page limit and consistent

observations in different distributions, in the experiment, we cre-

ate the candidate set F with only the Uniform and Micro-focused

sampling distributions.

• Asking price. Since each influencer v values her own influence

differently in reality, depending on concrete campaign contract

and personal factors (e.g., exclusive collaboration with this brand,

likeness towards the product to be promoted, choices of media

channels, etc.) [17, 18], we use the weighted influence sampled

from a consecutive integer range to include these realistic factors.

Considering that influencers usually overprice their influence

and following the findings reported in [25], we use the range

[δ (v ), 1.5δ (v )] for sampling. The asking price controlled by the

agency is a weighted-influence related percentage over the budget,
and we compute this percentage as the weighted influence of the

influencer over the total one of all candidates.

Environments. We conduct all experiments on a Linux server

with Intel Xeon E5 (2.60 GHz) CPUs and 512 GB RAM. All codes

are implemented in Python and any method which cannot finish

within 60 hours will be terminated. Our code is available at [24].
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Figure 6: The invested budget ratio comparison. Methods aremore effective with higher ratios. (Note: there is no trend to show
for each method when |F | increases since cases are independent. Hence, line chart is not used.)

8.3 Experimental Results
Upon the aforementioned metrics, we first evaluate to which extent

different methods protect benefits and improve satisfaction of dif-

ferent stakeholders. Furthermore, we conduct an ablation study on

the impact of the size of price choices on IC-Exact to demonstrate

the effectiveness of IC-Exact and CR-MWS.

8.3.1 Divergence ratio comparison. Figure 4 compares the diver-

gence ratio w.r.t. different sampling distributions and candidate

sizes. We have the following observations: (1) BC-MG shows very

competitive performance compared with BC-Exact, thereby demon-

strating the empirical effectiveness of BC-MG is way better than

what its worst-case approximation ratio indicates. However, both of

them are notably outperformed by flexible-choices based methods;

(2) with CR-Inf as the reference, the performance of IC-Exact is

generally better under the uniform sampling distribution than in

others. We suspect that IC-Exact is able to produce better cam-

paigns from the limited price choices when the degree distribution

of candidates is sparser. When candidates have similar degrees,

IC-Exact requires more fine-grained and similar price choices to

achieve lower divergence. As for other methods, we do not see

any clear impact of sampling distributions on the performance; (3)

CR-MWS significantly outperforms all other methods in all cases,

which demonstrates its effectiveness of protecting stakeholders’

benefits.
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8.3.2 Influence ratio comparison. Figure 5 compares the influence

ratios of each competitor method over the optimal influence based

on the standard price rate. The observations are summarized as fol-

lowing: (1) the influence ratio is above 1.0 in many cases. The reason

is that, in the problem setting with the influence maximization ob-

jective, the hiring price of an influencer is equal to the influencer’s

influence and can be higher than the hiring price computed by our

algorithms which are flexible on the hiring prices. As a result, our

algorithms may be able to hire more influencers and thus achieve

larger influence coverages than OPTinf . (2) BC-Exact and BC-MG

with our objective achieve very competitive influence compared

with BC-Exact with the influence maximization objective. Further-

more, the performance ranking of BC-Exact and BC-MG under

this metric can be indicated from their profit divergence scores.

For example, when BC-Exact achieves a lower divergence score

than BC-MG in Figure 4 (c) with |F | = 30, it also achieves greater

influence under the same setting. These observations indicate the

positive correlations between profit divergence minimization and

influence maximization under the binary-choice setting. (3) Integer-

Choice and Continuous-Range based methods are able to achieve

better influence ratios since they have greater space for price ad-

justment. While maintaining very competitive divergence scores,

IC-Exact tends to hire more candidates than CR-Inf which empha-

sizes satisfying the influencers with great influence and thus quickly

exhausts the hiring budget. IC-Exact is very effective since it makes

the best strategy with limited integer price choices. (4) Among all

the methods, CR-MWS achieves the greatest influence ratios in

most cases while maintaining the lowest divergence scores. It indi-

cates that protecting the benefits of influencers does not necessarily

compromise the brand’s interests.

8.3.3 Invested budget ratio comparison. Figure 6 compares the in-

vested budget ratios of different methods. As mentioned earlier, the

invested budget ratio is the least important effectiveness evalua-

tion metric to the agency since protecting benefits of the brand

and influencers is the first priority. Even though methods such as

BC-Exact and CR-Inf slightly outperform CR-MWS in many cases

under this metric, they attract the investment in a way that sacri-

fices the benefits of the brand or influencers as shown in Figure 4

and Figure 5. Thus, the agency should make comparison between

different methods under this metric only when these methods are

very competitive in previous evaluation.

8.3.4 Efficiency comparison. Figure 7 shows the running time of

different methods. BC-MG is the fastest one due to its simple strat-

egy and is up to two-orders-of-magnitude faster than BC-Exact.

CR-Inf and CR-MWS are ranked as second and third. Despite the no-

table difference between their time complexity (i.e., O ( |F | log( |F |))
and O ( |F | log( |F |) + |F |2) ), CR-MWS is very competitive with CR-

Inf practically since candidate sets are usually small. On the other

hand, IC-Exact can be up to six-orders-of-magnitude slower than

other methods, which makes it infeasible in the real world despite

its competitive performance against many methods.

8.3.5 Comparison with near-optimal solutions. In order to see the

performance limit of IC-Exact and further demonstrate the effec-

tiveness of CR-MWS, we gradually increase the size of R for each

influencer in IC-Exact. Figure 8 shows the performance of IC-Exact

Table 5: Running time (s) of IC-Exact on LastFM.

Dataset

|R |
10 20 30 40 50

Uniform 1.4E+3 3.7E+3 5.3E+3 5.9E+3 6.5E+3

Micro-focused 1.4E+3 3.9E+3 5.3E+3 6.0E+3 6.2E+3

Table 6: Running time (s) of IC-Exact on Orkut.

Dataset

|R |
10 20 30 40 50

Uniform 9.1E+3 3.3E+4 6.9E+4 1.2E+5 1.9E+5

Micro-focused 8.9E+3 3.1E+4 6.7E+4 1.3E+5 1.9E+5

with different sizes of R, where CR-InfInt refers to the version of

CR-Inf allowing integer price choices only. As |R | increases, the per-
formance of IC-Exact notably increases and converges to a stable

state on LaftFM but fails to converge on Orkut within the our time

limit (i.e., 60 hours). An interesting observation is that, even though

IC-Exact significantly outperforms all methods, it is still can be

outperformed by CR-MWS. We suspect that it is mainly caused by

the fact that IC-Exact can only work with integer price choices, as

evidenced by the notable performance difference between CR-Inf

and CR-InfInt which may even be outperformed by binary-choice

based methods. As we can see from Table 5 and Table 6, the run-

ning time of IC-Exact increases drastically as |R | and can be up to

eight-orders-of-magnitude slower than other flexible-choice based

methods (e.g., comparing with |F | = 90 in Figure 7(f) with |R | = 50),

which makes it infeasible to cater for real-world scenarios.

8.3.6 Ablation study on β . Recall that the budget B is a percentage

β of the total influence of candidates. We study the impact of β
on the D-Ratio, and the results are presented in Figure 9. Since

BC-Exact, BC-MG and IC-Exact require trial-and-error to set fixed

price choices to (efficiently) produce high-quality solutions, their

performance based on the default price choice setting for β = 0.8

may not be effective for a different β and can degrade as β decreases.

Since the asking price of an influencer, a percentage over the budget,
tends to decrease as β decreases and so does the optimal hiring

price, the difference between the opimal hiring price and the best

price we can choose from the predefined price choices tends to be

larger as β decreases, and so does the D-Ratio. On the other hand,

CR-Inf and CR-MWS always produce notably better solutions since

they consider any price under the budget. Similar to the results in

Figure 4, test cases under different settings of β are independent

such that the D-Ratio achieved by a method under a specific β
cannot be indicated by the ones under other settings of β , and
so does the optimal D-ratio. Thus, there is no expected trend of

the performance of CR-Inf and CR-MWS. In terms of efficiency

comparison, we find that the impact of β is significantly smaller

than that of |F | and is barely noticeable in figures, as shown in

Figure 10.

9 CONCLUSION
In this paper, we study how minimizing the profit divergence mini-

mization helps build an investment-persuasive influencer market-

ing campaign, so as to attract investments from the brand while

benefiting all stakeholders. We prove this problem to be NP-hard

and then propose several methods whose efficiency and effective-

ness are demonstrated by our extensive experiments. In future, we
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Figure 7: Running time comparison.

plan to analyze the accuracy of our Continuous-Range based ap-

proximate methods theoretically and extend our solutions to other

marketing scenarios with similar needs.
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Figure 8: Ablation study on |R | in IC-Exact. The price choices of other methods are set by default.
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