import streamlit as st from tools import * import pandas as pd import time from streamlit_extras.stateful_button import button _, file_tree_ph = sidebar(globals()) st.title("Finalize model") exp_id = st.session_state.get('exp_id') if exp_id is None: st.write("Please select an experiment first.") st.stop() use_synthetic_data = st.session_state.get('use_synth_data') df = pd.read_csv( PATH_TO_GEN_DATASET if use_synthetic_data else PATH_TO_TRAIN_DATASET) with st.container(border=True): chosen_target = st.selectbox( 'Choose the Target Column', df.columns, key="preserve_chosen_target", index=len(df.columns)-1) chosen_ignore = st.multiselect('Choose the Ignore Columns', df.columns, key="preserve_chosen_ignore") st.selectbox('Choose the Problem Type', [ 'classification', 'regression'], key="preserve_chosen_problem", index=identify_problem_type(df) == 'regression') exp = create_experiment( st.session_state.get('preserve_chosen_problem'), df, chosen_target, chosen_ignore, exp_id=exp_id) models = exp.models() chosen_model = st.selectbox( 'Choose the Model', options=models.index, format_func=lambda x: models.loc[x, 'Name'], key="preserve_chosen_model") if st.button('Finalize model', disabled=chosen_model is None or chosen_target is None or chosen_ignore is None): df = pd.read_csv(PATH_TO_TRAIN_DATASET) final_model = exp.create_model(chosen_model, verbose=False) exp.finalize_model(final_model) exp.save_model( final_model, f'{PATH_TO_MODELS}/cl_{chosen_model}'+("_gen" if use_synthetic_data else "")) st.success("Model finalized successfully") update_file_tree(file_tree_ph, globals())