
Object Oriented Programming (OOPs)
Concept in Java
Last Updated : 26 Jun, 2024

As the name suggests, Object-Oriented Programming or Java OOPs

concept refers to languages that use objects in programming, they use

objects as a primary source to implement what is to happen in the code.

Objects are seen by the viewer or user, performing tasks you assign.

Object-oriented programming aims to implement real-world entities like

inheritance, hiding, polymorphism, etc. in programming. The main aim of

OOPs is to bind together the data and the functions that operate on them

so that no other part of the code can access this data except that function.

Let us discuss prerequisites by polishing concepts of method declaration

and message passing. Starting off with the method declaration, it consists

of six components:

● Access Modifier: Defines the access type of the method i.e.

from where it can be accessed in your application. In Java, there

are 4 types of access specifiers:

○ public: Accessible in all classes in your

application.

○ protected: Accessible within the package in which

it is defined and in its subclass(es) (including

subclasses declared outside the package).

https://www.geeksforgeeks.org/access-modifiers-java


○ private: Accessible only within the class in which it

is defined.

○ default (declared/defined without using any

modifier): Accessible within the same class and

package within which its class is defined.

● The return type: The data type of the value returned by the

method or void if it does not return a value.

● Method Name: The rules for field names apply to method names

as well, but the convention is a little different.

● Parameter list: Comma-separated list of the input parameters

that are defined, preceded by their data type, within the enclosed

parentheses. If there are no parameters, you must use empty

parentheses ().

● Exception list: The exceptions you expect the method to throw.

You can specify these exception(s).

● Method body: It is the block of code, enclosed between braces,

that you need to execute to perform your intended operations.

sm


