ML-REFRANCE-CODES / PAMAP DATASET CODES / DEEP LSTM WITH 2 LAYERS.py
DEEP LSTM WITH 2 LAYERS.py
Raw
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, roc_curve, auc
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
import tensorflow as tf

# GPU Configuration
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
    try:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        print("GPU is available")
    except RuntimeError as e:
        print(e)
else:
    print("GPU is not available, using CPU")

# Paths to the datasets
PROTOCOL_PATH = r"C:\Users\LENOVO LEGION\Downloads\pamap2_extracted\PAMAP2_Dataset\Protocol"
OPTIONAL_PATH = r"C:\Users\LENOVO LEGION\Downloads\pamap2_extracted\PAMAP2_Dataset\Optional"

# Column names based on the readme file
COLUMN_NAMES = [
    'timestamp', 'activity_id', 'heart_rate',
    'hand_temperature', 'hand_acc16_1', 'hand_acc16_2', 'hand_acc16_3',
    'hand_acc6_1', 'hand_acc6_2', 'hand_acc6_3',
    'hand_gyro_1', 'hand_gyro_2', 'hand_gyro_3',
    'hand_magno_1', 'hand_magno_2', 'hand_magno_3',
    'hand_ori_1', 'hand_ori_2', 'hand_ori_3', 'hand_ori_4',
    'chest_temperature', 'chest_acc16_1', 'chest_acc16_2', 'chest_acc16_3',
    'chest_acc6_1', 'chest_acc6_2', 'chest_acc6_3',
    'chest_gyro_1', 'chest_gyro_2', 'chest_gyro_3',
    'chest_magno_1', 'chest_magno_2', 'chest_magno_3',
    'chest_ori_1', 'chest_ori_2', 'chest_ori_3', 'chest_ori_4',
    'ankle_temperature', 'ankle_acc16_1', 'ankle_acc16_2', 'ankle_acc16_3',
    'ankle_acc6_1', 'ankle_acc6_2', 'ankle_acc6_3',
    'ankle_gyro_1', 'ankle_gyro_2', 'ankle_gyro_3',
    'ankle_magno_1', 'ankle_magno_2', 'ankle_magno_3',
    'ankle_ori_1', 'ankle_ori_2', 'ankle_ori_3', 'ankle_ori_4'
]

# Activity labels
ACTIVITY_LABELS = {
    1: 'lying',
    2: 'sitting',
    3: 'standing',
    4: 'walking',
    5: 'running',
    6: 'cycling',
    7: 'Nordic walking',
    9: 'watching TV',
    10: 'computer work',
    11: 'car driving',
    12: 'ascending stairs',
    13: 'descending stairs',
    16: 'vacuum cleaning',
    17: 'ironing',
    18: 'folding laundry',
    19: 'house cleaning',
    20: 'playing soccer',
    24: 'rope jumping'
}

def load_data(file_path):
    """Load data from a single file."""
    data = pd.read_csv(file_path, sep=' ', header=None, names=COLUMN_NAMES)
    return data

def load_all_data(base_path):
    """Load all data files from the given path."""
    all_data = []
    for file in os.listdir(base_path):
        if file.endswith(".dat"):
            file_path = os.path.join(base_path, file)
            data = load_data(file_path)
            all_data.append(data)
    return pd.concat(all_data, ignore_index=True)

def preprocess_data(data):
    """Preprocess the loaded data."""
    # Remove rows with activity_id 0 (transient activities)
    data = data[data['activity_id'] != 0]
    
    # Handle missing values (NaN)
    data = data.dropna()
    
    # Select relevant features (using 16g accelerometer data as recommended)
    features = ['hand_acc16_1', 'hand_acc16_2', 'hand_acc16_3',
                'hand_gyro_1', 'hand_gyro_2', 'hand_gyro_3',
                'chest_acc16_1', 'chest_acc16_2', 'chest_acc16_3',
                'chest_gyro_1', 'chest_gyro_2', 'chest_gyro_3',
                'ankle_acc16_1', 'ankle_acc16_2', 'ankle_acc16_3',
                'ankle_gyro_1', 'ankle_gyro_2', 'ankle_gyro_3',
                'heart_rate']
    
    X = data[features]
    y = data['activity_id']
    
    # Normalize features
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    
    return X_scaled, y

# Load and preprocess data
print("Loading protocol data...")
protocol_data = load_all_data(PROTOCOL_PATH)
print("Loading optional data...")
optional_data = load_all_data(OPTIONAL_PATH)

# Combine protocol and optional data
all_data = pd.concat([protocol_data, optional_data], ignore_index=True)

print("Preprocessing data...")
X, y = preprocess_data(all_data)

print("Data loading and preprocessing complete.")
print(f"Features shape: {X.shape}")
print(f"Labels shape: {y.shape}")

# Reshape the data for LSTM input (samples, time steps, features)
X = X.reshape((X.shape[0], 1, X.shape[1]))

# Convert labels to categorical
y = to_categorical(y)

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Deep LSTM Model definition
def build_deep_lstm(input_shape, num_classes):
    model = Sequential([
        LSTM(100, input_shape=input_shape, return_sequences=True),
        Dropout(0.3),
        LSTM(50),
        Dropout(0.3),
        Dense(num_classes, activation='softmax')
    ])
    return model

# Function to train and evaluate the model
def train_and_evaluate_model(model, X_train, y_train, X_test, y_test, name="Deep LSTM"):
    optimizer = Adam(learning_rate=0.001)
    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
    
    history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=1)
    
    test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=0)
    print(f'{name} - Test accuracy: {test_accuracy*100:.2f}%')
    print(f'{name} - Test loss: {test_loss:.4f}')
    
    y_pred = model.predict(X_test)
    y_pred_classes = np.argmax(y_pred, axis=1)
    y_true = np.argmax(y_test, axis=1)
    
    f1 = f1_score(y_true, y_pred_classes, average='weighted')
    precision = precision_score(y_true, y_pred_classes, average='weighted')
    recall = recall_score(y_true, y_pred_classes, average='weighted')
    
    print(f'{name} - F1 Score: {f1:.4f}')
    print(f'{name} - Precision: {precision:.4f}')
    print(f'{name} - Recall: {recall:.4f}')
    
    return history, test_accuracy, f1, precision, recall, y_pred_classes, y_pred

# Visualization functions
def plot_accuracy(history, name="Deep LSTM"):
    plt.figure(figsize=(12, 8))
    plt.plot(history.history['accuracy'], label='Training Accuracy')
    plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
    plt.title(f'{name} - Model Accuracy')
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend()
    plt.savefig(f'accuracy_{name.lower().replace(" ", "_")}.png')
    plt.close()

def plot_loss(history, name="Deep LSTM"):
    plt.figure(figsize=(12, 8))
    plt.plot(history.history['loss'], label='Training Loss')
    plt.plot(history.history['val_loss'], label='Validation Loss')
    plt.title(f'{name} - Model Loss')
    plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend()
    plt.savefig(f'loss_{name.lower().replace(" ", "_")}.png')
    plt.close()

def plot_confusion_matrix(y_true, y_pred, name="Deep LSTM"):
    cm = confusion_matrix(y_true, y_pred)
    plt.figure(figsize=(15, 15))
    plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
    plt.title(f'{name} - Confusion Matrix')
    plt.colorbar()
    
    # Get the unique activity IDs present in the test set
    unique_activities = np.unique(y_true)
    
    # Create labels for the confusion matrix
    labels = [ACTIVITY_LABELS.get(act, f'Unknown ({act})') for act in unique_activities]
    
    plt.xticks(np.arange(len(labels)), labels, rotation=45, ha='right')
    plt.yticks(np.arange(len(labels)), labels)
    
    # Add text annotations
    thresh = cm.max() / 2.
    for i, j in np.ndindex(cm.shape):
        plt.text(j, i, format(cm[i, j], 'd'),
                ha="center", va="center",
                color="white" if cm[i, j] > thresh else "black")
    
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.tight_layout()
    plt.savefig(f'confusion_matrix_{name.lower().replace(" ", "_")}.png')
    plt.close()

def plot_metrics_bar(accuracy, f1, precision, recall, name="Deep LSTM"):
    metrics = ['Accuracy', 'F1 Score', 'Precision', 'Recall']
    values = [accuracy, f1, precision, recall]
    
    plt.figure(figsize=(10, 6))
    plt.bar(metrics, values)
    plt.title(f'{name} - Performance Metrics')
    plt.ylim(0, 1)
    
    # Add value labels on top of each bar
    for i, v in enumerate(values):
        plt.text(i, v + 0.01, f'{v:.4f}', ha='center')
    
    plt.tight_layout()
    plt.savefig(f'metrics_{name.lower().replace(" ", "_")}.png')
    plt.close()

def plot_roc_curves(y_test, y_pred, name="Deep LSTM"):
    n_classes = y_test.shape[1]
    fpr = dict()
    tpr = dict()
    roc_auc = dict()
    
    # Compute ROC curve and ROC area for each class
    for i in range(n_classes):
        fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])
    
    # Plot ROC curves
    plt.figure(figsize=(12, 8))
    for i in range(n_classes):
        if i in ACTIVITY_LABELS:  # Only plot for recognized activities
            plt.plot(fpr[i], tpr[i],
                     label=f'{ACTIVITY_LABELS[i]} (AUC = {roc_auc[i]:.2f})')
    
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(f'{name} - ROC Curves per Activity')
    plt.legend(loc="lower right", bbox_to_anchor=(1.8, 0))
    plt.tight_layout()
    plt.savefig(f'roc_curves_{name.lower().replace(" ", "_")}.png')
    plt.close()

# Main execution
if __name__ == "__main__":
    # Create and compile model
    input_shape = (X_train.shape[1], X_train.shape[2])
    num_classes = y_train.shape[1]
    model = build_deep_lstm(input_shape, num_classes)
    
    # Train and evaluate model
    print("\nTraining and evaluating Deep LSTM...")
    history, accuracy, f1, precision, recall, y_pred_classes, y_pred = train_and_evaluate_model(
        model, X_train, y_train, X_test, y_test, "Deep LSTM"
    )
    
    # Generate visualizations
    plot_accuracy(history)
    plot_loss(history)
    plot_confusion_matrix(np.argmax(y_test, axis=1), y_pred_classes)
    plot_metrics_bar(accuracy, f1, precision, recall)
    plot_roc_curves(y_test, y_pred)
    
    # Save the model
    model.save('deep_lstm_pamap2.h5')
    
    print("\nAnalysis complete. All plots have been saved.")
    print(f"Final test accuracy: {accuracy*100:.2f}%")
    print(f"F1 Score: {f1:.4f}")
    print(f"Precision: {precision:.4f}")
    print(f"Recall: {recall:.4f}")