import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score, f1_score
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Input
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
# Suppress TensorFlow GPU warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Paths to the dataset files
dataset_dir_path = r'C:\Users\LENOVO LEGION\Downloads\human+activity+recognition+using+smartphones\UCI HAR Dataset\UCI HAR Dataset'
# Load and preprocess data
def load_data():
# Load the feature labels
features = pd.read_csv(os.path.join(dataset_dir_path, 'features.txt'),
delim_whitespace=True,
header=None,
names=['index', 'feature'])
# Load the activity labels
activity_labels = pd.read_csv(os.path.join(dataset_dir_path, 'activity_labels.txt'),
delim_whitespace=True,
header=None,
names=['index', 'activity'])
# Load training data
X_train = pd.read_csv(os.path.join(dataset_dir_path, 'train', 'X_train.txt'),
delim_whitespace=True,
header=None)
y_train = pd.read_csv(os.path.join(dataset_dir_path, 'train', 'y_train.txt'),
delim_whitespace=True,
header=None,
names=['activity'])
# Load test data
X_test = pd.read_csv(os.path.join(dataset_dir_path, 'test', 'X_test.txt'),
delim_whitespace=True,
header=None)
y_test = pd.read_csv(os.path.join(dataset_dir_path, 'test', 'y_test.txt'),
delim_whitespace=True,
header=None,
names=['activity'])
# Label the columns
X_train.columns = features['feature']
X_test.columns = features['feature']
# Normalize the feature data
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Reshape the data for LSTM (samples, time steps, features)
X_train_reshaped = X_train_scaled.reshape((X_train_scaled.shape[0], 1, X_train_scaled.shape[1]))
X_test_reshaped = X_test_scaled.reshape((X_test_scaled.shape[0], 1, X_test_scaled.shape[1]))
# Encode activity labels
encoder = LabelEncoder()
y_train_encoded = encoder.fit_transform(y_train['activity'])
y_test_encoded = encoder.transform(y_test['activity'])
# Convert to categorical
y_train_categorical = to_categorical(y_train_encoded)
y_test_categorical = to_categorical(y_test_encoded)
return (X_train_reshaped, y_train_categorical,
X_test_reshaped, y_test_categorical,
activity_labels, X_train_scaled)
# Load data
print("Loading and preprocessing data...")
X_train, y_train, X_test, y_test, activity_labels, X_train_scaled = load_data()
print("Data loading completed.")
print(f"Training data shape: {X_train.shape}")
print(f"Test data shape: {X_test.shape}")
print(f"Number of activities: {len(activity_labels)}")
# Visualization functions
def plot_training_history(history, title="Model Training History"):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# Accuracy plot
ax1.plot(history.history['accuracy'], label='Training Accuracy')
ax1.plot(history.history['val_accuracy'], label='Validation Accuracy')
ax1.set_title(f'{title} - Accuracy')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Accuracy')
ax1.legend()
# Loss plot
ax2.plot(history.history['loss'], label='Training Loss')
ax2.plot(history.history['val_loss'], label='Validation Loss')
ax2.set_title(f'{title} - Loss')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Loss')
ax2.legend()
plt.tight_layout()
plt.savefig(f'training_history_{title.lower().replace(" ", "_")}.png')
plt.close()
def plot_confusion_matrix(y_true, y_pred, title="Confusion Matrix"):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title(title)
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Set x and y axis labels using activity names
tick_positions = np.arange(len(activity_labels)) + 0.5
plt.xticks(tick_positions, activity_labels['activity'], rotation=45, ha='right')
plt.yticks(tick_positions, activity_labels['activity'], rotation=0)
plt.tight_layout()
plt.savefig(f'confusion_matrix_{title.lower().replace(" ", "_")}.png')
plt.close()
def plot_feature_importance(model, title="Feature Importance"):
# Get the weights from the first LSTM layer
weights = np.abs(model.layers[0].get_weights()[0]).mean(axis=0).mean(axis=0)
# Create a dataframe of features and their importance
feature_importance = pd.DataFrame({
'feature': X_train_scaled.columns,
'importance': weights
}).sort_values('importance', ascending=False)
# Plot top 20 features
plt.figure(figsize=(12, 6))
sns.barplot(data=feature_importance.head(20), x='importance', y='feature')
plt.title(f'{title} - Top 20 Features')
plt.tight_layout()
plt.savefig(f'feature_importance_{title.lower().replace(" ", "_")}.png')
plt.close()
def plot_layer_activations(model, X_sample, layer_names, title="Layer Activations"):
# Create models that output layer activations
layer_outputs = [layer.output for layer in model.layers if layer.name in layer_names]
activation_model = Model(inputs=model.input, outputs=layer_outputs)
# Get activations
activations = activation_model.predict(X_sample[:5]) # Get first 5 samples
# Plot activations for each layer
for i, layer_name in enumerate(layer_names):
plt.figure(figsize=(10, 4))
plt.title(f'{title} - {layer_name}')
plt.imshow(activations[i][0].T, aspect='auto', cmap='viridis')
plt.colorbar(label='Activation')
plt.xlabel('Time Step')
plt.ylabel('Units')
plt.tight_layout()
plt.savefig(f'layer_activation_{layer_name.lower()}_{title.lower().replace(" ", "_")}.png')
plt.close()
# Deep LSTM Model definition
def deep_lstm(input_shape, num_classes):
model = Sequential([
LSTM(100, input_shape=input_shape, return_sequences=True),
Dropout(0.5),
LSTM(100, return_sequences=False),
Dropout(0.5),
Dense(num_classes, activation='softmax')
])
return model
# Function to train and evaluate model
def train_and_evaluate_model(model, X_train, y_train, X_test, y_test, model_name="Deep LSTM"):
# Compile model
model.compile(optimizer=Adam(learning_rate=0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Define callbacks
reduce_lr = ReduceLROnPlateau(monitor='val_loss',
factor=0.2,
patience=5,
min_lr=0.00001)
early_stopping = EarlyStopping(monitor='val_loss',
patience=10,
restore_best_weights=True)
# Train model
print(f"\nTraining {model_name}...")
history = model.fit(X_train, y_train,
epochs=20,
batch_size=64,
validation_split=0.2,
verbose=1,
callbacks=[reduce_lr, early_stopping])
# Evaluate model
print(f"\nEvaluating {model_name}...")
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
# Make predictions
y_pred = model.predict(X_test)
y_pred_classes = np.argmax(y_pred, axis=1)
y_true = np.argmax(y_test, axis=1)
# Calculate metrics
precision = precision_score(y_true, y_pred_classes, average='weighted')
recall = recall_score(y_true, y_pred_classes, average='weighted')
f1 = f1_score(y_true, y_pred_classes, average='weighted')
# Print results
print(f'\n{model_name} Results:')
print(f'Test Accuracy: {accuracy*100:.2f}%')
print(f'Test Loss: {loss:.4f}')
print(f'Precision: {precision:.4f}')
print(f'Recall: {recall:.4f}')
print(f'F1 Score: {f1:.4f}')
return history, accuracy, precision, recall, f1, y_true, y_pred_classes, y_pred
def plot_learning_curves(history, model_name="Deep LSTM"):
plt.figure(figsize=(12, 4))
# Plot learning rate
plt.subplot(1, 2, 1)
plt.plot(history.history['lr'] if 'lr' in history.history else
[0.001] * len(history.history['loss']), marker='o')
plt.title(f'{model_name} - Learning Rate Adjustment')
plt.xlabel('Epoch')
plt.ylabel('Learning Rate')
plt.yscale('log')
# Plot validation loss
plt.subplot(1, 2, 2)
plt.plot(history.history['val_loss'], marker='o')
plt.title(f'{model_name} - Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.tight_layout()
plt.savefig(f'learning_curves_{model_name.lower().replace(" ", "_")}.png')
plt.close()
def save_detailed_results(model_name, history, accuracy, precision, recall, f1, y_true, y_pred_classes, y_pred):
with open(f'{model_name.lower().replace(" ", "_")}_detailed_results.txt', 'w') as f:
# Basic metrics
f.write(f"{model_name} Detailed Results\n")
f.write("="*50 + "\n\n")
f.write(f"Test Accuracy: {accuracy*100:.2f}%\n")
f.write(f"Precision: {precision:.4f}\n")
f.write(f"Recall: {recall:.4f}\n")
f.write(f"F1 Score: {f1:.4f}\n\n")
# Classification report
f.write("Classification Report:\n")
f.write(classification_report(y_true, y_pred_classes,
target_names=activity_labels['activity']))
# Confusion matrix
f.write("\nConfusion Matrix:\n")
cm = confusion_matrix(y_true, y_pred_classes)
f.write(np.array2string(cm, separator=', '))
# Per-class metrics
f.write("\n\nPer-class Performance:\n")
for i, activity in enumerate(activity_labels['activity']):
true_class = (y_true == i)
pred_class = (y_pred_classes == i)
class_precision = precision_score(true_class, pred_class, average='binary')
class_recall = recall_score(true_class, pred_class, average='binary')
class_f1 = f1_score(true_class, pred_class, average='binary')
f.write(f"\n{activity}:\n")
f.write(f"Precision: {class_precision:.4f}\n")
f.write(f"Recall: {class_recall:.4f}\n")
f.write(f"F1 Score: {class_f1:.4f}\n")
def plot_prediction_distribution(y_true, y_pred_classes, model_name="Deep LSTM"):
plt.figure(figsize=(12, 6))
# Plot distribution of true vs predicted labels
true_dist = pd.Series(y_true).value_counts()
pred_dist = pd.Series(y_pred_classes).value_counts()
x = np.arange(len(activity_labels))
width = 0.35
plt.bar(x - width/2, true_dist, width, label='True')
plt.bar(x + width/2, pred_dist, width, label='Predicted')
plt.xlabel('Activity')
plt.ylabel('Count')
plt.title(f'{model_name} - True vs Predicted Distribution')
plt.xticks(x, activity_labels['activity'], rotation=45, ha='right')
plt.legend()
plt.tight_layout()
plt.savefig(f'prediction_distribution_{model_name.lower().replace(" ", "_")}.png')
plt.close()
# Main execution
if __name__ == "__main__":
print("UCI HAR Dataset - Deep LSTM Implementation")
print("="*50)
# Create and train model
input_shape = (X_train.shape[1], X_train.shape[2])
num_classes = y_train.shape[1]
model = deep_lstm(input_shape, num_classes)
# Print model summary
print("\nModel Architecture:")
model.summary()
# Train and evaluate
results = train_and_evaluate_model(
model, X_train, y_train, X_test, y_test, "Deep LSTM"
)
history, accuracy, precision, recall, f1, y_true, y_pred_classes, y_pred = results
# Generate visualizations
plot_training_history(history, "Deep LSTM")
plot_confusion_matrix(y_true, y_pred_classes, "Deep LSTM")
plot_feature_importance(model, "Deep LSTM")
plot_learning_curves(history, "Deep LSTM")
plot_layer_activations(model, X_test, ['lstm', 'lstm_1'], "Deep LSTM")
plot_prediction_distribution(y_true, y_pred_classes, "Deep LSTM")
# Save detailed results
save_detailed_results("Deep LSTM", history, accuracy, precision, recall, f1,
y_true, y_pred_classes, y_pred)
# Save model
model.save('deep_lstm_uci_har.h5')
print("\nAnalysis complete. All results and visualizations have been saved.")
print(f"\nModel saved as 'deep_lstm_uci_har.h5'")
print(f"Detailed results saved as 'deep_lstm_detailed_results.txt'")