import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix, roc_curve, auc, precision_recall_curve, classification_report from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping from sklearn.model_selection import train_test_split import numpy as np import tensorflow as tf import tarfile import logging # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') logger = logging.getLogger() # Suppress TensorFlow GPU warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Enable memory growth for the GPU gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: logger.error(f"GPU error: {e}") logger.info("Starting data preprocessing...") # Path to the dataset file dataset_path = r'C:\Users\LENOVO LEGION\Desktop\ml codes\ML CODES WISDIM\WISDM_ar_latest.tar.gz' extract_path = r'C:\Users\LENOVO LEGION\Desktop\ml codes\ML CODES WISDIM\WISDM_ar_latest' # Extract the dataset if not os.path.exists(extract_path): logger.info("Extracting dataset...") with tarfile.open(dataset_path, 'r:gz') as tar: tar.extractall(path=extract_path) # Define the path to the main dataset file data_file = os.path.join(extract_path, 'WISDM_ar_v1.1', 'WISDM_ar_v1.1_raw.txt') # Load the dataset, skipping bad lines logger.info("Loading dataset...") column_names = ['user', 'activity', 'timestamp', 'x', 'y', 'z'] wisdm_data = pd.read_csv(data_file, header=None, names=column_names, on_bad_lines='skip') logger.info(f"Initial dataset shape: {wisdm_data.shape}") # Data Cleaning # Convert all values to strings wisdm_data['x'] = wisdm_data['x'].astype(str) wisdm_data['y'] = wisdm_data['y'].astype(str) wisdm_data['z'] = wisdm_data['z'].astype(str) # Remove non-numeric characters wisdm_data['x'] = wisdm_data['x'].str.replace(';', '', regex=False) wisdm_data['y'] = wisdm_data['y'].str.replace(';', '', regex=False) wisdm_data['z'] = wisdm_data['z'].str.replace(';', '', regex=False) # Remove rows with non-numeric values wisdm_data = wisdm_data[wisdm_data['x'].apply(lambda x: x.replace('.', '', 1).isdigit())] wisdm_data = wisdm_data[wisdm_data['y'].apply(lambda y: y.replace('.', '', 1).isdigit())] wisdm_data = wisdm_data[wisdm_data['z'].apply(lambda z: z.replace('.', '', 1).isdigit())] # Convert columns back to numeric wisdm_data['x'] = pd.to_numeric(wisdm_data['x']) wisdm_data['y'] = pd.to_numeric(wisdm_data['y']) wisdm_data['z'] = pd.to_numeric(wisdm_data['z']) # Handle missing values wisdm_data = wisdm_data.dropna() logger.info(f"Dataset shape after cleaning: {wisdm_data.shape}") # Feature Engineering logger.info("Performing feature engineering...") # Calculate magnitude wisdm_data['magnitude'] = np.sqrt(wisdm_data['x']**2 + wisdm_data['y']**2 + wisdm_data['z']**2) # Calculate jerk (derivative of acceleration) for axis in ['x', 'y', 'z']: diff = np.diff(wisdm_data[axis]) time_diff = np.diff(wisdm_data['timestamp']) jerk = np.zeros(len(wisdm_data)) jerk[1:] = np.where(time_diff != 0, diff / time_diff, 0) wisdm_data[f'{axis}_jerk'] = jerk # Calculate rolling mean and standard deviation window_size = 20 for axis in ['x', 'y', 'z']: wisdm_data[f'{axis}_rolling_mean'] = wisdm_data.groupby('user')[axis].rolling(window=window_size).mean().reset_index(0, drop=True) wisdm_data[f'{axis}_rolling_std'] = wisdm_data.groupby('user')[axis].rolling(window=window_size).std().reset_index(0, drop=True) # Handle NaN and infinite values wisdm_data = wisdm_data.replace([np.inf, -np.inf], np.nan).fillna(method='ffill').fillna(method='bfill') # Map activity labels to integers activity_mapping = {label: idx for idx, label in enumerate(wisdm_data['activity'].unique())} wisdm_data['activity'] = wisdm_data['activity'].map(activity_mapping) # Reverse mapping for later use reverse_activity_mapping = {v: k for k, v in activity_mapping.items()} # Normalize features logger.info("Normalizing features...") scaler = StandardScaler() features = ['x', 'y', 'z', 'magnitude', 'x_jerk', 'y_jerk', 'z_jerk', 'x_rolling_mean', 'y_rolling_mean', 'z_rolling_mean', 'x_rolling_std', 'y_rolling_std', 'z_rolling_std'] wisdm_data[features] = scaler.fit_transform(wisdm_data[features]) # Create sequences def create_sequences(data, seq_length, step=1): sequences = [] labels = [] for start in range(0, len(data) - seq_length, step): sequences.append(data.iloc[start:start + seq_length][features].values) labels.append(data.iloc[start + seq_length - 1]['activity']) return np.array(sequences), np.array(labels) # Create sequences from the data sequence_length = 200 logger.info("Creating sequences...") X, y = create_sequences(wisdm_data, sequence_length) logger.info(f"Shape of X after sequence creation: {X.shape}") logger.info(f"Shape of y after sequence creation: {y.shape}") # Final check for any NaN or infinite values if np.isnan(X).any() or np.isinf(X).any(): logger.error("NaN or infinite values detected in the final dataset") raise ValueError("Dataset contains NaN or infinite values after preprocessing") # Convert labels to categorical y_categorical = to_categorical(y) # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y_categorical, test_size=0.2, random_state=42) logger.info(f"Training set shape: {X_train.shape}") logger.info(f"Testing set shape: {X_test.shape}") # Deep LSTM Model definition def build_deep_lstm(input_shape, num_classes): model = Sequential([ LSTM(100, input_shape=input_shape, return_sequences=True), Dropout(0.5), LSTM(100, return_sequences=False), Dropout(0.5), Dense(num_classes, activation='softmax') ]) return model def train_and_evaluate_model(model, X_train, y_train, X_test, y_test, model_name="Deep LSTM"): # Compile model model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) # Define callbacks reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.00001) early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True) # Train model logger.info(f"\nTraining {model_name}...") history = model.fit(X_train, y_train, epochs=20, batch_size=64, validation_split=0.2, callbacks=[reduce_lr, early_stopping], verbose=1) # Evaluate model loss, accuracy = model.evaluate(X_test, y_test, verbose=0) y_pred = model.predict(X_test) return model, history, accuracy, y_pred # Visualization functions def plot_training_history(history, model_name="Deep LSTM"): plt.figure(figsize=(15, 5)) # Plot accuracy plt.subplot(1, 2, 1) plt.plot(history.history['accuracy'], label='Training Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.title(f'{model_name} - Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() # Plot loss plt.subplot(1, 2, 2) plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.title(f'{model_name} - Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.tight_layout() plt.savefig(f'training_history_{model_name.lower().replace(" ", "_")}.png') plt.close() def plot_confusion_matrix(y_true, y_pred, model_name="Deep LSTM"): y_pred_classes = np.argmax(y_pred, axis=1) y_true_classes = np.argmax(y_true, axis=1) cm = confusion_matrix(y_true_classes, y_pred_classes) plt.figure(figsize=(12, 10)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title(f'{model_name} - Confusion Matrix') plt.ylabel('True label') plt.xlabel('Predicted label') # Set x and y tick labels to activity names tick_marks = np.arange(len(reverse_activity_mapping)) plt.xticks(tick_marks + 0.5, [reverse_activity_mapping[i] for i in range(len(reverse_activity_mapping))], rotation=45, ha='right') plt.yticks(tick_marks + 0.5, [reverse_activity_mapping[i] for i in range(len(reverse_activity_mapping))], rotation=0) plt.tight_layout() plt.savefig(f'confusion_matrix_{model_name.lower().replace(" ", "_")}.png') plt.close() return cm def plot_roc_curves(y_test, y_pred, model_name="Deep LSTM"): n_classes = y_test.shape[1] fpr = {} tpr = {} roc_auc = {} # Calculate ROC curve and ROC area for each class for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Plot ROC curves plt.figure(figsize=(12, 8)) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label=f'{reverse_activity_mapping[i]} (AUC = {roc_auc[i]:.2f})') plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title(f'{model_name} - ROC Curves') plt.legend(loc="lower right") plt.tight_layout() plt.savefig(f'roc_curves_{model_name.lower().replace(" ", "_")}.png') plt.close() return roc_auc def plot_precision_recall_curves(y_test, y_pred, model_name="Deep LSTM"): n_classes = y_test.shape[1] precision = {} recall = {} pr_auc = {} # Calculate precision-recall curve for each class for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_pred[:, i]) pr_auc[i] = auc(recall[i], precision[i]) # Plot precision-recall curves plt.figure(figsize=(12, 8)) for i in range(n_classes): plt.plot(recall[i], precision[i], label=f'{reverse_activity_mapping[i]} (AUC = {pr_auc[i]:.2f})') plt.xlabel('Recall') plt.ylabel('Precision') plt.title(f'{model_name} - Precision-Recall Curves') plt.legend(loc="lower left") plt.tight_layout() plt.savefig(f'precision_recall_curves_{model_name.lower().replace(" ", "_")}.png') plt.close() return pr_auc def plot_layer_activations(model, X_sample, model_name="Deep LSTM"): # Create models to get LSTM layer outputs layer_outputs = [] for i, layer in enumerate(model.layers): if isinstance(layer, LSTM): intermediate_model = tf.keras.Model(inputs=model.input, outputs=layer.output) layer_outputs.append(intermediate_model.predict(X_sample[:1])) # Plot activations for i, activations in enumerate(layer_outputs): plt.figure(figsize=(12, 6)) plt.imshow(activations[0].T, aspect='auto', cmap='viridis') plt.title(f'{model_name} - LSTM Layer {i+1} Activations') plt.xlabel('Time Step') plt.ylabel('Hidden Units') plt.colorbar(label='Activation') plt.tight_layout() plt.savefig(f'layer_{i+1}_activations_{model_name.lower().replace(" ", "_")}.png') plt.close() def save_model_results(model, history, accuracy, cm, roc_auc, pr_auc, model_name="Deep LSTM"): with open(f'{model_name.lower().replace(" ", "_")}_results.txt', 'w') as f: # Model architecture f.write(f"{model_name} Architecture\n") f.write("="*50 + "\n\n") model.summary(print_fn=lambda x: f.write(x + '\n')) f.write("\n") # Performance metrics f.write("Performance Metrics\n") f.write("-"*50 + "\n") f.write(f"Test Accuracy: {accuracy*100:.2f}%\n\n") # Confusion Matrix f.write("Confusion Matrix\n") f.write("-"*50 + "\n") np.savetxt(f, cm, fmt='%d') f.write("\n") # ROC AUC scores f.write("ROC AUC Scores\n") f.write("-"*50 + "\n") for i in range(len(roc_auc)): f.write(f"{reverse_activity_mapping[i]}: {roc_auc[i]:.4f}\n") f.write("\n") # PR AUC scores f.write("Precision-Recall AUC Scores\n") f.write("-"*50 + "\n") for i in range(len(pr_auc)): f.write(f"{reverse_activity_mapping[i]}: {pr_auc[i]:.4f}\n") f.write("\n") # Training history f.write("Training History\n") f.write("-"*50 + "\n") f.write("Epoch\tLoss\tAccuracy\tVal_Loss\tVal_Accuracy\n") for i in range(len(history.history['loss'])): f.write(f"{i+1}\t{history.history['loss'][i]:.4f}\t") f.write(f"{history.history['accuracy'][i]:.4f}\t") f.write(f"{history.history['val_loss'][i]:.4f}\t") f.write(f"{history.history['val_accuracy'][i]:.4f}\n") # Main execution if __name__ == "__main__": logger.info("Starting Deep LSTM model training and evaluation...") # Create and compile model input_shape = (X_train.shape[1], X_train.shape[2]) num_classes = y_train.shape[1] model = build_deep_lstm(input_shape, num_classes) # Print model summary model.summary() # Train and evaluate model model, history, accuracy, y_pred = train_and_evaluate_model( model, X_train, y_train, X_test, y_test, "Deep LSTM" ) # Generate visualizations and metrics cm = plot_confusion_matrix(y_test, y_pred) plot_training_history(history) roc_auc = plot_roc_curves(y_test, y_pred) pr_auc = plot_precision_recall_curves(y_test, y_pred) plot_layer_activations(model, X_test) # Save results save_model_results(model, history, accuracy, cm, roc_auc, pr_auc) # Save model model.save('deep_lstm_wisdm.h5') logger.info(f"\nDeep LSTM Results:") logger.info(f"Test Accuracy: {accuracy*100:.2f}%") logger.info("Model and results have been saved.")