"""Implements the SoftlearningEnv that is usable in softlearning algorithms.""" from abc import ABCMeta, abstractmethod from collections import defaultdict import numpy as np from serializable import Serializable class SoftlearningEnv(Serializable, metaclass=ABCMeta): """The abstract Softlearning environment class. It's an abstract class defining the interface an adapter needs to implement in order to function with softlearning algorithms. It closely follows the gym.Env, yet that may not be the case in the future. The main API methods that users of this class need to know are: step reset render close seed And set the following attributes: action_space: The Space object corresponding to valid actions observation_space: The Space object corresponding to valid observations reward_range: A tuple corresponding to the min and max possible rewards The methods are accessed publicly as "step", "reset", etc.. The non-underscored versions are wrapper methods to which we may add functionality over time. """ # Set this in SOME subclasses metadata = {'render.modes': []} reward_range = (-float('inf'), float('inf')) spec = None # Set these in ALL subclasses action_space = None observation_space = None def __init__(self, domain, task, *args, **kwargs): """Initialize an environment based on domain and task. Keyword Arguments: domain -- task -- *args -- **kwargs -- """ self._Serializable__initialize(locals()) self._domain = domain self._task = task @property @abstractmethod def observation_space(self): raise NotImplementedError @property def active_observation_shape(self): return self.observation_space.shape def convert_to_active_observation(self, observation): return observation @property @abstractmethod def action_space(self): raise NotImplementedError @abstractmethod def step(self, action): """Run one timestep of the environment's dynamics. When end of episode is reached, you are responsible for calling `reset()` to reset this environment's state. Accepts an action and returns a tuple (observation, reward, done, info). Args: action (object): an action provided by the environment Returns: observation (object): agent's observation of the current environment reward (float) : amount of reward returned after previous action done (boolean): whether the episode has ended, in which case further step() calls will return undefined results info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning) """ raise NotImplementedError @abstractmethod def reset(self): """Resets the state of the environment and returns an initial observation. Returns: observation (object): the initial observation of the space. """ raise NotImplementedError @abstractmethod def render(self, mode='human'): """Renders the environment. The set of supported modes varies per environment. (And some environments do not support rendering at all.) By convention, if mode is: - human: render to the current display or terminal and return nothing. Usually for human consumption. - rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video. - ansi: Return a string (str) or StringIO.StringIO containing a terminal-style text representation. The text can include newlines and ANSI escape sequences (e.g. for colors). Note: Make sure that your class's metadata 'render.modes' key includes the list of supported modes. It's recommended to call super() in implementations to use the functionality of this method. Args: mode (str): the mode to render with close (bool): close all open renderings Example: class MyEnv(Env): metadata = {'render.modes': ['human', 'rgb_array']} def render(self, mode='human'): if mode == 'rgb_array': return np.array(...) # return RGB frame suitable for video elif mode is 'human': ... # pop up a window and render else: super(MyEnv, self).render(mode=mode) # just raise an exception """ raise NotImplementedError def render_rollouts(self, paths): """Renders past rollouts of the environment.""" if hasattr(self._env, 'render_rollouts'): return self._env.render_rollouts(paths) unwrapped_env = self.unwrapped if hasattr(unwrapped_env, 'render_rollouts'): return unwrapped_env.render_rollouts(paths) @abstractmethod def close(self): """Override _close in your subclass to perform any necessary cleanup. Environments will automatically close() themselves when garbage collected or when the program exits. """ return @abstractmethod def seed(self, seed=None): """Sets the seed for this env's random number generator(s). Note: Some environments use multiple pseudorandom number generators. We want to capture all such seeds used in order to ensure that there aren't accidental correlations between multiple generators. Returns: list<bigint>: Returns the list of seeds used in this env's random number generators. The first value in the list should be the "main" seed, or the value which a reproducer should pass to 'seed'. Often, the main seed equals the provided 'seed', but this won't be true if seed=None, for example. """ pass def copy(self): """Create a deep copy the environment. TODO: Investigate if this can be done somehow else, especially for gym envs. """ return Serializable.clone(self) @property @abstractmethod def unwrapped(self): """Completely unwrap this env. Returns: gym.Env: The base non-wrapped gym.Env instance """ return self._env def __str__(self): return '<{type_name}(domain={domain}, task={task}) <{env}>>'.format( type_name=type(self).__name__, domain=self._domain, task=self._task, env=self._env) @abstractmethod def get_param_values(self): raise NotImplementedError @abstractmethod def set_param_values(self, params): raise NotImplementedError def get_path_infos(self, paths, *args, **kwargs): """Log some general diagnostics from the env infos. TODO(hartikainen): These logs don't make much sense right now. Need to figure out better format for logging general env infos. """ keys = list(paths[0].get('infos', [{}])[0].keys()) results = defaultdict(list) for path in paths: path_results = { k: [ info[k] for info in path['infos'] ] for k in keys } for info_key, info_values in path_results.items(): info_values = np.array(info_values) results[info_key + '-first'].append(info_values[0]) results[info_key + '-last'].append(info_values[-1]) results[info_key + '-mean'].append(np.mean(info_values)) results[info_key + '-median'].append(np.median(info_values)) if np.array(info_values).dtype != np.dtype('bool'): results[info_key + '-range'].append(np.ptp(info_values)) aggregated_results = {} for key, value in results.items(): aggregated_results[key + '-mean'] = np.mean(value) return aggregated_results