""" Mass list of aminoacids, protenimodifications, glycan monomers, etc. Contains also all functions for mass calculation. Source of mass values from: http://web.expasy.org/findmod/findmod_masses.html """ #我需要知道那些支链也碎的mz,所以我需要知道怎么表明立体结构,以糖所处的位置为糖峰标号,新糖峰标记,比如以前的BY无法标支链碎裂峰,现在以糖来做下标 #pglyco结构转换为图结构 #可以做ficharge到percursor charge,丢水,丢NH3, ?三电荷的碎片有吗,我有看过,那还是保留吧 谱图预测可以快速匹配大量碎片 #对于糖来说,如果对称糖结构,那么不同的来源会有相同的mz,出现在一个峰上,可能只能强度平分 #所有的函数都汇聚在pepfragmass()函数了,可以只用那个函数 #HCD 碎裂,by离子会把糖也全部丢掉,而且只碎糖的时候也会碎裂多根键 找一下HCD碎裂的诊断离子表 #所有可能的糖结构,需要能做成可以理解的模式。 # 。其实还是需要考虑一下,为什么要做谱图搜索,对于算法而言,糖产生一些细小的结构改变,只是去做一些分析。但是对谱图预测而言,需要重新去预测。那我现在最多只能拿已有的糖去做谱图预测。 #IgG每个位点有的糖就那么几十种,实在不行可以按照那个来。 #糖的峰要慢慢check,注意一下mz #单糖可以通过多步反应,掉中间那个,可以不预测,只作为诊断离子,HCD模式如何计算碎裂多次 #用ETD模式,CID模式,和HCD模式,依次测试 #可以结合sequence searching 和spectral searching,先匹配预测的mz,再匹配预测的强度 #搜索做断两次+单糖+丢Fuc,预测做丢一次+丢Fuc #有不同的碎裂模式,不同的碎裂模式要用相应的谱图验证 import re import copy import dgl import torch import ipdb import itertools # --------------------------- Other masses ----------------------------# # http://www.sisweb.com/referenc/source/exactmas.htm MASS = {} MASS["H2O"] = 18.01057 MASS["NH3"] = 17.02655 MASS["H+"] = 1.00728 MASS["H"] = 1.007825 MASS["C"] = 12.0 MASS["N"] = 14.003074 MASS["O"] = 15.994915 MASS["S"] = 31.972072 MASS["P"] = 30.973763 MASS["Na"] = 22.989770 MASS["K"] = 38.963708 MASS["Mg"] = 23.985045 # --------------------------- Aminoacids ------------------------------# AMINOACID = {} AMINOACID["A"] = 71.03711 AMINOACID["R"] = 156.10111 AMINOACID["N"] = 114.04293 AMINOACID["J"] = 114.04293 #带糖的N AMINOACID["D"] = 115.02694 AMINOACID["C"] = 103.00919 AMINOACID["E"] = 129.04259 AMINOACID["Q"] = 128.05858 AMINOACID["G"] = 57.02146 AMINOACID["H"] = 137.05891 AMINOACID["I"] = 113.08406 AMINOACID["L"] = 113.08406 AMINOACID["K"] = 128.09496 AMINOACID["M"] = 131.04049 AMINOACID["F"] = 147.06841 AMINOACID["P"] = 97.05276 AMINOACID["S"] = 87.03203 AMINOACID["T"] = 101.04768 AMINOACID["W"] = 186.07931 AMINOACID["Y"] = 163.06333 AMINOACID["V"] = 99.06841 # ------------------------------ Glycans ------------------------------# #Glycan的列表,Monoisotopic mass,库中的所有修饰保持大写,输入的大小写都可以兼容,因为可以转换 GLYCAN = {} GLYCAN["DHEX"] = 146.0579 GLYCAN["HEX"] = 162.0528 GLYCAN["HEXNAC"] = 203.0794 GLYCAN["NEUAC"] = 291.0954 GLYCAN["NEUGC"] = 307.0903 GLYCAN["FUC"] = 146.0579 # --------------------------- Compositions ----------------------------# # http://www.webqc.org/aminoacids.php COMPOSITION = {} COMPOSITION['A'] = {'C': 3, 'H': 7, 'N': 1, 'O': 2} COMPOSITION['C'] = {'C': 3, 'H': 7, 'N': 1, 'O': 2, 'S': 1} COMPOSITION['D'] = {'C': 4, 'H': 7, 'N': 1, 'O': 4} COMPOSITION['E'] = {'C': 5, 'H': 9, 'N': 1, 'O': 4} COMPOSITION['F'] = {'C': 9, 'H': 11, 'N': 1, 'O': 2} COMPOSITION['G'] = {'C': 2, 'H': 5, 'N': 1, 'O': 2} COMPOSITION['H'] = {'C': 6, 'H': 9, 'N': 3, 'O': 2} COMPOSITION['I'] = {'C': 6, 'H': 13, 'N': 1, 'O': 2} COMPOSITION['K'] = {'C': 6, 'H': 14, 'N': 2, 'O': 2} COMPOSITION['L'] = {'C': 6, 'H': 13, 'N': 1, 'O': 2} COMPOSITION['M'] = {'C': 5, 'H': 11, 'N': 1, 'O': 2, 'S': 1} COMPOSITION['N'] = {'C': 4, 'H': 8, 'N': 2, 'O': 3} COMPOSITION['J'] = {'C': 4, 'H': 8, 'N': 2, 'O': 3} COMPOSITION['P'] = {'C': 5, 'H': 9, 'N': 1, 'O': 2} COMPOSITION['Q'] = {'C': 5, 'H': 10, 'N': 2, 'O': 3} COMPOSITION['R'] = {'C': 6, 'H': 14, 'N': 4, 'O': 2} COMPOSITION['S'] = {'C': 3, 'H': 7, 'N': 1, 'O': 3} COMPOSITION['T'] = {'C': 4, 'H': 9, 'N': 1, 'O': 3} COMPOSITION['V'] = {'C': 5, 'H': 11, 'N': 1, 'O': 2} COMPOSITION['W'] = {'C': 11, 'H': 12, 'N': 2, 'O': 2} COMPOSITION['Y'] = {'C': 9, 'H': 11, 'N': 1, 'O': 3} COMPOSITION["HEX"] = {'C': 6, 'H': 12, 'N': 0, 'O': 6} COMPOSITION["DHEX"] = {'C': 6, 'H': 12, 'N': 0, 'O': 5} COMPOSITION["HEXNAC"] = {'C': 8, 'H': 15, 'N': 1, 'O': 6} COMPOSITION["NEUAC"] = {'C': 11, 'H': 19, 'N': 1, 'O': 9} COMPOSITION["NEUGC"] = {'C': 11, 'H': 19, 'N': 1, 'O': 10} COMPOSITION["H2O"] = {'H': 2, 'O': 1} # --------------------------- Proteinmodifications---------------------# PROTEINMODIFICATION = {} PROTEINMODIFICATION["ACE"] = {"mass": 42.0106, "composition":{'C': 2, 'H': 2, 'O': 1} } # Acetylation PROTEINMODIFICATION["AMI"] = {"mass": -0.9840, "targets": {"CTERM"}, "composition":{'H': 1, 'O': -1, 'N': 1} } # Amidation # Cys_CAM Idoacetamide treatment (carbamidation) PROTEINMODIFICATION["CAR"] = {"mass": 57.021464, "targets": {"C","NTERM"}, "composition":{'C':2, 'H':3, 'O':1, 'N':1} } # Cys_CM, Iodoacetic acid treatment (carboxylation) PROTEINMODIFICATION["CM"] = {"mass": 58.005479, "targets": {"C"}, "composition":{'C': 2, 'H': 2, 'O': 2} } PROTEINMODIFICATION["DEA"] = {"mass": 0.9840, "targets": {"N", "Q"}, "composition":{'H': -1, 'O': 1, 'N': -1} } # Deamidation PROTEINMODIFICATION["DEH"] = {"mass": -18.0106, "targets": {"S", "T"}, "composition":{'H': -2, 'O': -1} } # Dehydration Serine PROTEINMODIFICATION["GUA"] = {"mass": 42.0218, "targets": {"K"}, "composition":{'C': 1, 'H': 2,'N': 2} } # K Guandination PROTEINMODIFICATION["HYD"] = {"mass": 15.9949, "composition":{'O': 1} } # Hydroxylation PROTEINMODIFICATION["MET"] = {"mass": 14.0157, "composition":{'C': 1, 'H': 2} } # Methylation PROTEINMODIFICATION["OXI"] = {"mass": 15.9949, "targets": {"M"}, "composition":{'O': 1} } # MSO PROTEINMODIFICATION["GLY"] = {"mass":0.0 , "targets": {"N", "S", "T"}, "composition":{} } #按照后修饰和氨基酸对PROTEINMODIFICATION里的后修饰进行排序 def getModificationNames(): """ Return a sorted list of Modification names. Only contains modifications with targets declaration""" def sort_names(name): if "_" in name: amino, mod = name.split("_") return mod, amino return name, " " names = set() for key in PROTEINMODIFICATION: if "targets" in PROTEINMODIFICATION[key]: names.add(key) return sorted(names, key=sort_names) # print("Modifications in list",getModificationNames()) # ------------------------------- Glycan graph ---------------------------# #表示糖的立体结构,通过DFS计算碎裂一条边以后,剩下的糖部分 node2dict={0:"peptide",1:"HexNAc",2:"Hex",3:"Fuc",4:"NeuAc",5:"NeuGc"} node2char={"P":"peptide","H" : "Hex", "N" : "HexNAc", "A" : "NeuAc", "G" : "NeuGc" , "F" :"Fuc"} node2idx={"P":0,"H" : 2, "N" : 1, "A" : 4, "G" : 5 , "F" :3} def peptide_process(peptide): """Create dict for input sequende. Input:LSVECAJK_5.Car._6_2_(N(F)(N(H(H)(N)(H(N))))) Output:{'sequence': 'LSVECAJK', 'charge': '2', 'modifications': [{'name': '(Car)1', 'amino': 'C', 'position': 4, 'type': 'mod'}, {'name': '(Hex)3(HexNAc)4(Fuc)1', 'amino': 'J', 'position': 6, 'structure': '(N(F)(N(H(H)(N)(H(N)))))', 'type': 'glyco'}]} """ a=peptide.split("_") sequence=a[0] # print(sequence) charge=a[3] mod_dict={} mod_dictg={} mod_list=[] if a[1] !="None": mod=a[1].rstrip(".").split(".") # print(mod) for i in range(0,len(mod),2): mod_dict=copy.deepcopy(mod_dict) mod_dict["name"]="("+mod[i+1]+")1" mod_dict["amino"]=sequence[int(mod[i])-1] mod_dict["position"]=int(mod[i])-1 mod_dict["type"]="mod" mod_list.append(mod_dict) # print("mod_list",mod_list) glycos = a[4].split(';') # ['(N(A)(H(A)))', '(N(A)(H(A)))'] positions = a[2].split(';') # ['1', '14'] for glyco, position in zip(glycos, positions): composition = { "H": glyco.count("H"), "N": glyco.count("N"), "A": glyco.count("A"), "G": glyco.count("G"), "F": glyco.count("F") } comp_str = "" for k in composition: if composition[k] > 0: comp_str += f"({node2char[k]}){composition[k]}" position = int(position) # 每次循环创建新的mod_dictg mod_dictg = { "name": comp_str, "amino": peptide[position], "position": position, "structure": glyco, "type": "glyco" } mod_list.append(mod_dictg) peptide_dict={"sequence":sequence,"charge":charge,"modifications":mod_list} return peptide_dict def glyco_process_0(glyco:str): glyco_ind=re.sub("\w","",glyco) glyco_cha=re.sub("\W","",glyco) # ipdb.set_trace() if len(glyco_ind) != 2*len(glyco_cha): print("alert:len(glyco_ind) != 2*len(glyco_cha)") raise AssertionError node1_index=-1 node2_index=0 node1="P" node_group=[] # ipdb.set_trace() for i in range(len(glyco_ind)): if glyco_ind[i] =="(": node2=glyco_cha[node2_index] node1_index+=1 node2_index+=1 node=[node1_index,node2_index] node_group.append(node) # ipdb.set_trace() # print(node_group) # print("(",node1_index) # print("(",node2_index) node1=node2 node1_index=node2_index-1 if glyco_ind[i]==")": node1_index-=1 node1=glyco_cha[node1_index] # print(")",node1_index) # ipdb.set_trace() return node1_index,node2_index,node_group,glyco_cha def glyco_process(glyco:str): glyco_ind=re.sub("\w","",glyco) glyco_cha=re.sub("\W","",glyco) # ipdb.set_trace() if len(glyco_ind) != 2*len(glyco_cha): print("alert:len(glyco_ind) != 2*len(glyco_cha)") raise AssertionError ##双指针,同时需要dict指明str的index和node index的关系 node1_ptr=0 node2_ptr=0 node1=0##多余的起点 indict={-1:0,} node_count=0 edge_index=[] stack=[-2] # ipdb.set_trace() while node2_ptr < len(glyco): if glyco[node2_ptr]=="(": # print("(") node1_ptr=stack[-1] stack.append(node2_ptr) elif glyco[node2_ptr]==")": # print(")") node1_ptr=stack.pop() else:##碰到字母 # print("add") node_count+=1 indict[node2_ptr]=node_count edge_index.append([indict[node1_ptr+1],indict[node2_ptr]]) # print(node2_ptr) # ipdb.set_trace() node2_ptr+=1 # print(edge_index) return node1_ptr,node2_ptr,edge_index,glyco_cha # print(glyco_process("(N(N(H(H)(H(H))))(F))")) # glyco_process_0("(N(N(H(H)(H(H))))(F))") # glyco_process_0("(N(F)(N(H(H(N(H)))(H(N(H(G)))))))") # glyco_process_0("(N(N(H(H(H(H)))(H(H(H(H)))(H(H(H(H))))))))") # glyco_process_0("(N(N(H(H(N(H(A)))(N(H)))(H(H))))(F))") # glyco_process("(N(N(H(H(N(H(A)))(N(H)))(H(H))))(F))") # ipdb.set_trace() # global diff # diff=0 # def glycoprocess_diff(glyco): # glyco=glyco["H,N,A,G,F"] # graphedge_0=glyco_process_0(glyco)[2] # graphedge_1=glyco_process(glyco)[2] # if graphedge_0!= graphedge_1: # # print(glyco) # # print(graphedge_1) # # print(graphedge_0) # global diff # diff+=1 # # print(diff) # # ipdb.set_trace() # return diff # # ipdb.set_trace() # import pandas as pd # mouse_gdb=pd.read_csv("/remote-home/yxwang/test/zzb/DeepGlyco/DeepSweet_v1/code/task_processing/AHGF/pGlyco-N-Mouse.gdb",sep="\t") # mouse_gdb.apply(glycoprocess_diff,axis=1) # ipdb.set_trace() def GlycanFrag_struc(glyco_graph): edge_index=glyco_graph[2] # print("edge_index",edge_index) #eg.[[0, 1], [1, 2], [1, 3], [3, 4], [4, 5], [4, 6], [6, 7], [7, 8], [5, 9], [9, 10], [10, 11]] nodef="P"+glyco_graph[3] nodef=[node2idx[i] for i in nodef] # print("nodef",nodef) #eg. nodef [0, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 3] g=dgl.graph(edge_index) g.ndata["mononer"]=torch.Tensor(nodef).to(int) return g def GlycanFrag(glyco_graph): edge_index=glyco_graph[2] # print("edge_index",edge_index) #eg.[[0, 1], [1, 2], [1, 3], [3, 4], [4, 5], [4, 6], [6, 7], [7, 8], [5, 9], [9, 10], [10, 11]] nodef="P"+glyco_graph[3] nodef=[node2idx[i] for i in nodef] # print("nodef",nodef) #eg. nodef [0, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 3] g=dgl.graph(edge_index) g.ndata["mononer"]=torch.Tensor(nodef).to(int) glycanfrag={} for eid in range(len(g.edges()[0])): graphe=dgl.remove_edges(g,eid) removed_edge=g.edges()[0][eid].item(),g.edges()[1][eid].item() #c从这里可以看出,removed_edge是按照eid的顺序从0到len(g.edges()[0])从图上裂掉的。所以removed_edge的顺序就是eid的顺序 eid_res=list(dgl.dfs_edges_generator(graphe,0)) noderes=[0] graphe_edges=graphe.edges() for eid2 in eid_res: node1,node2=graphe_edges[0][eid2],graphe_edges[1][eid2] noderes.append(node1.item()) noderes.append(node2.item()) noderes=list(set(noderes)) res_monomer=g.ndata["mononer"][noderes].numpy().tolist() res_sugar=[node2dict[i] for i in res_monomer if i != 0] # print("removed_edge:",removed_edge,"res_index:",res_monomer,"res_sugar:",res_sugar) glycanfrag[removed_edge]=res_sugar return glycanfrag def GlycanFrag_HCD(glyco_graph): edge_index=glyco_graph[2] # print("edge_index",edge_index) nodef="P"+glyco_graph[3] nodef=[node2idx[i] for i in nodef] # print("nodef",nodef) g=dgl.graph(edge_index) g.ndata["mononer"]=torch.Tensor(nodef).to(int) glycanfrag={} # print("g.edges",g.edges()) for eid in range(len(g.edges()[0])): for eid1 in range(eid,len(g.edges()[0])): graphe=dgl.remove_edges(g,[eid,eid1]) removed_edge1=g.edges()[0][eid].item(),g.edges()[1][eid].item() removed_edge2=g.edges()[0][eid1].item(),g.edges()[1][eid1].item() removed_edge=[removed_edge1,removed_edge2] # ------------------- turn to bidirectional ------------------- u , v = graphe.edges(order = "eid") graphe.add_edges(v , u) # bidirect # print("removed_edge_list",removed_edge) three_splits=[] for dfs_initial_node in [removed_edge1[0],removed_edge1[1],removed_edge2[1]]: # print("dfs_initial_node:",dfs_initial_node) noderes=[dfs_initial_node] eid_res=list(dgl.dfs_edges_generator(graphe,dfs_initial_node)) #很奇怪,这里可以接受0,但是不能接受removed_edge1[0] removed_edge1[1] removed_edge2[2] # print("removed_edge1[0]",removed_edge1[0]) # print("eid_res",eid_res) graphe_edges=graphe.edges() # print("graphe_edges",graphe_edges) for eid2 in eid_res: # print("eid_res_eid2",eid2) node1,node2=graphe_edges[0][eid2],graphe_edges[1][eid2] noderes.append(node1.item()) noderes.append(node2.item()) noderes=list(set(noderes)) # ipdb.set_trace() res_monomer=g.ndata["mononer"][noderes].numpy().tolist() res_sugar=[node2dict[i] for i in res_monomer if i != 0] three_splits.append( {"res_index":res_monomer,"res_sugar":res_sugar}) # print("removed_edge:",removed_edge,"three_splits:", three_splits) removed_str="" for n in removed_edge: for n1 in n: removed_str+=str(n1) glycanfrag[removed_str]=three_splits return glycanfrag # import ipdb # ipdb.set_trace() # glyco_graph=glyco_process("(N(F)(N(H(H)(H))))") # glycanfrag=GlycanFrag_HCD(glyco_graph) # print(glycanfrag) #对得到的糖碎片计算mz,算好了放到最后一个函数,做整合 # ------------------------------- Functions ---------------------------# #计算肽段部分质量 def calcPeptideMass(peptide): mass = 0 for s in peptide["sequence"]: try: mass += AMINOACID[s] except KeyError: print("Unknown Aminoacid '"+s+"'!") raise return mass # print("Peptide",peptide) # peptidemass=calcPeptideMass(peptide) # print("Mass for peptide without modifications",peptidemass) #计算后修饰的总质量 def calcModificationMass(peptide): mass = 0 if peptide["modifications"] is None: return mass if len(peptide["modifications"]) ==0: return mass # TODO: Checks for modification consistency # a) amount of amino acids must be in sequence # b) a given position (except -1) can only be for mod in peptide["modifications"]: name=mod["name"] for part in re.findall(r"\(.+?\)-?\d+", name.upper()): monomer, amount = part.split(")") monomer = monomer[1:] amount = int(amount) if monomer in GLYCAN: mass += GLYCAN[monomer]*amount elif monomer in MASS: mass += MASS[monomer]*amount elif monomer in PROTEINMODIFICATION: mass += PROTEINMODIFICATION[monomer]["mass"]*amount else: raise Exception("cannot find monomer {} in {}".format(monomer, name)) return mass # modificationmass=calcModificationMass(peptide) # print("mass for modifications",modificationmass) #算修饰的mz ver:算糖基质量,可以算加和物质 def calcModpepMass(peptide): peptidemass = calcPeptideMass(peptide) modificationmass = calcModificationMass(peptide) ModpepMass=peptidemass+modificationmass return ModpepMass # ModpepMass=calcModpepMass(peptide) # print("Mass for peptide with modifications",ModpepMass) def pepfragmass(input,mode,maxcharge=3): peptide=peptide_process(input) # print("peptide",peptide) for modification in peptide["modifications"]: name=modification["name"].replace(" ", "") if re.match(r"^(\(.+?\)-?\d+)+$", name) == None: print("name",name) raise Exception(r"""Input string '{}' doesn't follow the regex '^(\(.+?\)-?\d+)+$' Please surrond monomers by brackets followed by the amount of the monomer, e.g. '(NeuAc)1(H2O)-1(H+)1'""".format(name)) sequence=peptide["sequence"] length=len(sequence) FragCharge=list(range(1,min((int(peptide["charge"])+1),maxcharge)))#FragCharge最大值调小了 b_ions=[] y_ions=[] B_ions=[] Y_ions=[] # 计算b/y离子 #检查一下糖的碎片模式,碎片电荷以及中性丢失的情况 #M+H-H2O,M+H, M+2H-H2O, M+2H ... #计算B/Y ions #多糖基化肽段另一侧应该完全碎裂,还是应该保留 if "HCD_1" in mode: ModpepMass = calcModpepMass(peptide) + MASS["H2O"] peptide_copy = copy.deepcopy(peptide) # 原始备份,最后还原 frag_index_offset = 0 # 新增:控制多个糖之间的 frag_index 编号递增 for i, mod in enumerate(peptide["modifications"]): if mod["type"] != "glyco": continue structure = mod["structure"] glyco_graph = glyco_process(structure) glycanfrags = GlycanFrag(glyco_graph) for local_index, (eid, glycan) in enumerate(glycanfrags.items()): frag_index = frag_index_offset + local_index # ✅ 正确编号 composition = { "H": glycan.count("Hex"), "N": glycan.count("HexNAc"), "A": glycan.count("NeuAc"), "G": glycan.count("NeuGc"), "F": glycan.count("Fuc") } comp_str = ''.join( f"({node2char[k]}){v}" for k, v in composition.items() if v > 0 ) # 修改当前糖基的 name 字段,其它糖保持原样 peptide["modifications"][i]["name"] = comp_str FragYMass = calcModpepMass(peptide) + MASS["H2O"] FragBMass = ModpepMass - FragYMass # print(peptide) # ipdb.set_trace() for ficharge in FragCharge: base_label = f"{eid[0]}{eid[1]}_{frag_index}_{ficharge}" #如果有两个糖,第二个糖的frag_index不从0开始,从前一个糖后面编,比如前一个糖frag_index最大到了4,后一个从5开始数 for loss_type in ["noloss", "loss_H2O", "loss_NH3", "loss_FUC"]: loss_mass = { "noloss": 0, "loss_H2O": MASS["H2O"], "loss_NH3": MASS["NH3"], "loss_FUC": GLYCAN["FUC"] if "Fuc" in glycan else 0 }[loss_type] # 计算 Y ion FragTypeY = f"Y{base_label}" if loss_type != "noloss" and loss_mass > 0: FragTypeY += f"_{loss_type}" if loss_mass==0 and loss_type=="loss_FUC": pass else: Y_ions.append({FragTypeY: round((FragYMass - loss_mass) / ficharge + MASS["H+"], 5)}) # 计算 B ion if loss_type!="loss_FUC": FragTypeB = f"B{base_label}" if loss_type != "noloss" and loss_mass > 0: FragTypeB += f"_{loss_type}" B_ions.append({FragTypeB: round((FragBMass - loss_mass) / ficharge + MASS["H+"], 5)}) frag_index_offset += len(glycanfrags) peptide = copy.deepcopy(peptide_copy) # 还原 # print("mark",peptide) # ipdb.set_trace() # print(Y_ions) if "HCD_by" in mode: #HCD的b,y碎片需要脱糖,或者有一个HexNac glyco_states = ["(HexNAc)0", "(HexNAc)1"] glyco_mods = [ (i, mod) for i, mod in enumerate(peptide["modifications"]) if mod["type"] == "glyco" ] gly_sites = [mod["position"] for _, mod in glyco_mods] # 所有糖基的脱糖状态组合,如 [(0,0), (0,1), (1,0), (1,1)] for state_combo in itertools.product(glyco_states, repeat=len(glyco_mods)): # 修改所有糖基的 name 字段 for (i, _), gly_state in zip(glyco_mods, state_combo): peptide["modifications"][i]["name"] = gly_state ModpepMass = calcModpepMass(peptide) + MASS["H2O"] for FrgNumC in range(1, len(sequence)): Fragpepb = sequence[:FrgNumC] Frgmodification = [ mod for mod in peptide["modifications"] if mod["position"] <= FrgNumC - 1 ] Fragb = {"sequence": Fragpepb, "modifications": Frgmodification} FragbMass = calcModpepMass(Fragb) FragyMass = ModpepMass - FragbMass for ficharge in FragCharge: for loss_type in ["noloss", "loss_H2O", "loss_NH3"]: loss_mass = { "noloss": 0, "loss_H2O": MASS["H2O"], "loss_NH3": MASS["NH3"] }[loss_type] frag_label_b = f"b{FrgNumC}_{ficharge}" frag_label_y = f"y{len(sequence) - FrgNumC}_{ficharge}" if loss_type != "noloss": frag_label_b += f"_{loss_type}" frag_label_y += f"_{loss_type}" frag_label_b += "_" + "_".join(state_combo) frag_label_y += "_" + "_".join(state_combo) # 判断糖是否要保留 if not (frag_label_b.startswith("b") and any(FrgNumC <= s for s in gly_sites) and "(HexNAc)1" in state_combo): b_ions.append({frag_label_b: round((FragbMass - loss_mass) / ficharge + MASS["H+"], 5)}) if not (frag_label_y.startswith("y") and any(FrgNumC > s for s in gly_sites) and "(HexNAc)1" in state_combo): y_ions.append({frag_label_y: round((FragyMass - loss_mass) / ficharge + MASS["H+"], 5)}) #HCD_1 mode意味着肽段全保留,糖部分碎一刀,另外如果有Fuc可以丢Fuc #B/Y ions糖可以碎裂两刀或者一刀,虽然可以碎三次以上,但是碎太多,搜索空间过大,而且不具有结构区分性 #另外加上单糖 #有很多m/z重复的,需要去重 return b_ions,y_ions,B_ions,Y_ions # input="AEAVGETLTLPGLVSADJGTYTCEAANK_23.Car._63002_3_(N(F)(N(H(H(H)(H))(H(N(H)(F))))))" # input="EDGMLPAJR_None_7_3_(N(F)(N(H(H(H))(H))))" # input="GGJGTICDNQR_7.Car._2_2_(N(F)(N(H(H(N))(H(N)(N)))))" # mz_calc=pepfragmass(input,["HCD_by"]) # print(mz_calc) # import ipdb # ipdb.set_trace() # print("Fragment MZ for modifided peptides",pepfragmass(peptide)) # input="EDGMLPAJR_None_7_3_(N(F)(N(H(H(H))(H))))" # input="GGJGTICDNQR_7.Car._2_2_(N(F)(N(H(H(N))(H(N)(N)))))" # input="TNLPYSQDKAQPGTTNYQHHHHHH_None_0;13_5_(N(A));(N(A)(H(A)))" # mz_calc=pepfragmass(input,["HCD_1"]) # print(mz_calc) # import ipdb # ipdb.set_trace()