Pref-Restoration / DiffusionNFT / flow_grpo / gen_eval.py
gen_eval.py
Raw
import json
import os
import sys
import time

import warnings

warnings.filterwarnings("ignore")

import numpy as np
from collections import defaultdict
from PIL import Image, ImageOps
import torch
import mmdet
from mmdet.apis import inference_detector, init_detector

import open_clip
from clip_benchmark.metrics import zeroshot_classification as zsc

zsc.tqdm = lambda it, *args, **kwargs: it


def load_geneval(DEVICE):
    def timed(fn):
        def wrapper(*args, **kwargs):
            startt = time.time()
            result = fn(*args, **kwargs)
            endt = time.time()
            print(
                f"Function {fn.__name__!r} executed in {endt - startt:.3f}s",
                file=sys.stderr,
            )
            return result

        return wrapper

    # Load models

    @timed
    def load_models():
        CONFIG_PATH = os.path.join(
            os.path.dirname(os.path.dirname(mmdet.__file__)),
            "configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py",
        )
        OBJECT_DETECTOR = "mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco_20220504_001756-743b7d99"
        from flow_grpo.reward_ckpt_path import CKPT_PATH

        _CKPT_PATH = os.path.join(CKPT_PATH, f"{OBJECT_DETECTOR}.pth")
        object_detector = init_detector(CONFIG_PATH, _CKPT_PATH, device=DEVICE)

        clip_arch = "ViT-L-14"
        clip_model, _, transform = open_clip.create_model_and_transforms(clip_arch, pretrained="openai", device=DEVICE)
        tokenizer = open_clip.get_tokenizer(clip_arch)

        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets/object_names.txt")) as cls_file:
            classnames = [line.strip() for line in cls_file]

        return object_detector, (clip_model, transform, tokenizer), classnames

    COLORS = [
        "red",
        "orange",
        "yellow",
        "green",
        "blue",
        "purple",
        "pink",
        "brown",
        "black",
        "white",
    ]
    COLOR_CLASSIFIERS = {}

    # Evaluation parts

    class ImageCrops(torch.utils.data.Dataset):
        def __init__(self, image: Image.Image, objects):
            self._image = image.convert("RGB")
            bgcolor = "#999"
            if bgcolor == "original":
                self._blank = self._image.copy()
            else:
                self._blank = Image.new("RGB", image.size, color=bgcolor)
            self._objects = objects

        def __len__(self):
            return len(self._objects)

        def __getitem__(self, index):
            box, mask = self._objects[index]
            if mask is not None:
                assert tuple(self._image.size[::-1]) == tuple(mask.shape), (
                    index,
                    self._image.size[::-1],
                    mask.shape,
                )
                image = Image.composite(self._image, self._blank, Image.fromarray(mask))
            else:
                image = self._image
            image = image.crop(box[:4])
            return (transform(image), 0)

    def color_classification(image, bboxes, classname):
        if classname not in COLOR_CLASSIFIERS:
            COLOR_CLASSIFIERS[classname] = zsc.zero_shot_classifier(
                clip_model,
                tokenizer,
                COLORS,
                [
                    f"a photo of a {{c}} {classname}",
                    f"a photo of a {{c}}-colored {classname}",
                    f"a photo of a {{c}} object",
                ],
                str(DEVICE),
            )
        clf = COLOR_CLASSIFIERS[classname]
        dataloader = torch.utils.data.DataLoader(ImageCrops(image, bboxes), batch_size=16, num_workers=4)
        with torch.no_grad():
            pred, _ = zsc.run_classification(clip_model, clf, dataloader, str(DEVICE))
            return [COLORS[index.item()] for index in pred.argmax(1)]

    def compute_iou(box_a, box_b):
        area_fn = lambda box: max(box[2] - box[0] + 1, 0) * max(box[3] - box[1] + 1, 0)
        i_area = area_fn(
            [
                max(box_a[0], box_b[0]),
                max(box_a[1], box_b[1]),
                min(box_a[2], box_b[2]),
                min(box_a[3], box_b[3]),
            ]
        )
        u_area = area_fn(box_a) + area_fn(box_b) - i_area
        return i_area / u_area if u_area else 0

    def relative_position(obj_a, obj_b):
        """Give position of A relative to B, factoring in object dimensions"""
        boxes = np.array([obj_a[0], obj_b[0]])[:, :4].reshape(2, 2, 2)
        center_a, center_b = boxes.mean(axis=-2)
        dim_a, dim_b = np.abs(np.diff(boxes, axis=-2))[..., 0, :]
        offset = center_a - center_b
        #
        revised_offset = np.maximum(np.abs(offset) - POSITION_THRESHOLD * (dim_a + dim_b), 0) * np.sign(offset)
        if np.all(np.abs(revised_offset) < 1e-3):
            return set()
        #
        dx, dy = revised_offset / np.linalg.norm(offset)
        relations = set()
        if dx < -0.5:
            relations.add("left of")
        if dx > 0.5:
            relations.add("right of")
        if dy < -0.5:
            relations.add("above")
        if dy > 0.5:
            relations.add("below")
        return relations

    def evaluate(image, objects, metadata):
        """
        Evaluate given image using detected objects on the global metadata specifications.
        Assumptions:
        * Metadata combines 'include' clauses with AND, and 'exclude' clauses with OR
        * All clauses are independent, i.e., duplicating a clause has no effect on the correctness
        * CHANGED: Color and position will only be evaluated on the most confidently predicted objects;
            therefore, objects are expected to appear in sorted order
        """
        correct = True
        reason = []
        matched_groups = []
        # Check for expected objects
        for req in metadata.get("include", []):
            classname = req["class"]
            matched = True
            found_objects = objects.get(classname, [])[: req["count"]]
            if len(found_objects) < req["count"]:
                correct = matched = False
                reason.append(f"expected {classname}>={req['count']}, found {len(found_objects)}")
            else:
                if "color" in req:
                    # Color check
                    colors = color_classification(image, found_objects, classname)
                    if colors.count(req["color"]) < req["count"]:
                        correct = matched = False
                        reason.append(
                            f"expected {req['color']} {classname}>={req['count']}, found "
                            + f"{colors.count(req['color'])} {req['color']}; and "
                            + ", ".join(f"{colors.count(c)} {c}" for c in COLORS if c in colors)
                        )
                if "position" in req and matched:
                    # Relative position check
                    expected_rel, target_group = req["position"]
                    if matched_groups[target_group] is None:
                        correct = matched = False
                        reason.append(f"no target for {classname} to be {expected_rel}")
                    else:
                        for obj in found_objects:
                            for target_obj in matched_groups[target_group]:
                                true_rels = relative_position(obj, target_obj)
                                if expected_rel not in true_rels:
                                    correct = matched = False
                                    reason.append(
                                        f"expected {classname} {expected_rel} target, found "
                                        + f"{' and '.join(true_rels)} target"
                                    )
                                    break
                            if not matched:
                                break
            if matched:
                matched_groups.append(found_objects)
            else:
                matched_groups.append(None)
        # Check for non-expected objects
        for req in metadata.get("exclude", []):
            classname = req["class"]
            if len(objects.get(classname, [])) >= req["count"]:
                correct = False
                reason.append(f"expected {classname}<{req['count']}, found {len(objects[classname])}")
        return correct, "\n".join(reason)

    def evaluate_reward(image, objects, metadata):
        """
        Evaluate given image using detected objects on the global metadata specifications.
        Assumptions:
        * Metadata combines 'include' clauses with AND, and 'exclude' clauses with OR
        * All clauses are independent, i.e., duplicating a clause has no effect on the correctness
        * CHANGED: Color and position will only be evaluated on the most confidently predicted objects;
            therefore, objects are expected to appear in sorted order
        """
        correct = True
        reason = []
        rewards = []
        matched_groups = []
        # Check for expected objects
        for req in metadata.get("include", []):
            classname = req["class"]
            matched = True
            found_objects = objects.get(classname, [])
            rewards.append(1 - abs(req["count"] - len(found_objects)) / req["count"])
            if len(found_objects) != req["count"]:
                correct = matched = False
                reason.append(f"expected {classname}=={req['count']}, found {len(found_objects)}")
                if "color" in req or "position" in req:
                    rewards.append(0.0)
            else:
                if "color" in req:
                    # Color check
                    colors = color_classification(image, found_objects, classname)
                    rewards.append(1 - abs(req["count"] - colors.count(req["color"])) / req["count"])
                    if colors.count(req["color"]) != req["count"]:
                        correct = matched = False
                        reason.append(
                            f"expected {req['color']} {classname}>={req['count']}, found "
                            + f"{colors.count(req['color'])} {req['color']}; and "
                            + ", ".join(f"{colors.count(c)} {c}" for c in COLORS if c in colors)
                        )
                if "position" in req and matched:
                    # Relative position check
                    expected_rel, target_group = req["position"]
                    if matched_groups[target_group] is None:
                        correct = matched = False
                        reason.append(f"no target for {classname} to be {expected_rel}")
                        rewards.append(0.0)
                    else:
                        for obj in found_objects:
                            for target_obj in matched_groups[target_group]:
                                true_rels = relative_position(obj, target_obj)
                                if expected_rel not in true_rels:
                                    correct = matched = False
                                    reason.append(
                                        f"expected {classname} {expected_rel} target, found "
                                        + f"{' and '.join(true_rels)} target"
                                    )
                                    rewards.append(0.0)
                                    break
                            if not matched:
                                break
                        rewards.append(1.0)
            if matched:
                matched_groups.append(found_objects)
            else:
                matched_groups.append(None)
        reward = sum(rewards) / len(rewards) if rewards else 0
        return correct, reward, "\n".join(reason)

    def evaluate_image(image_pils, metadatas, only_strict):
        results = inference_detector(object_detector, [np.array(image_pil) for image_pil in image_pils])
        ret = []
        for result, image_pil, metadata in zip(results, image_pils, metadatas):
            bbox = result[0] if isinstance(result, tuple) else result
            segm = result[1] if isinstance(result, tuple) and len(result) > 1 else None
            image = ImageOps.exif_transpose(image_pil)
            detected = {}
            # Determine bounding boxes to keep
            confidence_threshold = THRESHOLD if metadata["tag"] != "counting" else COUNTING_THRESHOLD
            for index, classname in enumerate(classnames):
                ordering = np.argsort(bbox[index][:, 4])[::-1]
                ordering = ordering[bbox[index][ordering, 4] > confidence_threshold]  # Threshold
                ordering = ordering[:MAX_OBJECTS].tolist()  # Limit number of detected objects per class
                detected[classname] = []
                while ordering:
                    max_obj = ordering.pop(0)
                    detected[classname].append(
                        (
                            bbox[index][max_obj],
                            None if segm is None else segm[index][max_obj],
                        )
                    )
                    ordering = [
                        obj
                        for obj in ordering
                        if NMS_THRESHOLD == 1 or compute_iou(bbox[index][max_obj], bbox[index][obj]) < NMS_THRESHOLD
                    ]
                if not detected[classname]:
                    del detected[classname]
            # Evaluate
            is_strict_correct, score, reason = evaluate_reward(image, detected, metadata)
            if only_strict:
                is_correct = False
            else:
                is_correct, _ = evaluate(image, detected, metadata)
            ret.append(
                {
                    "tag": metadata["tag"],
                    "prompt": metadata["prompt"],
                    "correct": is_correct,
                    "strict_correct": is_strict_correct,
                    "score": score,
                    "reason": reason,
                    "metadata": json.dumps(metadata),
                    "details": json.dumps({key: [box.tolist() for box, _ in value] for key, value in detected.items()}),
                }
            )
        return ret

    object_detector, (clip_model, transform, tokenizer), classnames = load_models()
    THRESHOLD = 0.3
    COUNTING_THRESHOLD = 0.9
    MAX_OBJECTS = 16
    NMS_THRESHOLD = 1.0
    POSITION_THRESHOLD = 0.1

    @torch.no_grad()
    def compute_geneval(images, metadatas, only_strict=False):
        required_keys = [
            "single_object",
            "two_object",
            "counting",
            "colors",
            "position",
            "color_attr",
        ]
        scores = []
        strict_rewards = []
        grouped_strict_rewards = defaultdict(list)
        rewards = []
        grouped_rewards = defaultdict(list)
        results = evaluate_image(images, metadatas, only_strict=only_strict)
        # print(results)
        for result in results:
            strict_rewards.append(1.0 if result["strict_correct"] else 0.0)
            scores.append(result["score"])
            rewards.append(1.0 if result["correct"] else 0.0)
            tag = result["tag"]
            for key in required_keys:
                if key != tag:
                    grouped_strict_rewards[key].append(-10.0)
                    grouped_rewards[key].append(-10.0)
                else:
                    grouped_strict_rewards[tag].append(1.0 if result["strict_correct"] else 0.0)
                    grouped_rewards[tag].append(1.0 if result["correct"] else 0.0)
        return (
            scores,
            rewards,
            strict_rewards,
            dict(grouped_rewards),
            dict(grouped_strict_rewards),
        )

    return compute_geneval


if __name__ == "__main__":
    data = {
        "images": [
            Image.open(
                os.path.join(
                    os.path.dirname(os.path.abspath(__file__)),
                    "test_cases/a photo of a brown giraffe and a white stop sign.png",
                )
            )
        ],
        "metadatas": [
            {
                "tag": "color_attr",
                "include": [
                    {"class": "giraffe", "count": 1, "color": "red"},
                    {"class": "stop sign", "count": 1, "color": "white"},
                ],
                "prompt": "a photo of a brown giraffe and a white stop sign",
            }
        ],
        "only_strict": False,
    }
    compute_geneval = load_geneval("cuda")
    scores, rewards, strict_rewards, group_rewards, group_strict_rewards = compute_geneval(**data)
    print(f"Score: {scores}")
    print(f"Reward: {rewards}")
    print(f"Strict reward: {strict_rewards}")
    print(f"Group reward: {group_rewards}")
    print(f"Group strict reward: {group_strict_rewards}")