import cv2
import math
import random
import numpy as np
import torch
from PIL import Image
import io
from . import gaussian_kernels
def degrade_image(img_gt,
gt_size=512,
in_size=512,
use_motion_kernel=False,
motion_kernels=None,
motion_kernel_prob=0.001,
kernel_list=['iso', 'aniso'],
kernel_prob=[0.5, 0.5],
blur_kernel_size=41,
blur_sigma=[1, 15],
downsample_range=[4, 30],
noise_range=[0, 20],
jpeg_range=[30, 80]):
img_array = np.array(img_gt)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
img_in = img_array.astype(np.float32) / 255.0
if use_motion_kernel and motion_kernels is not None and random.random() < motion_kernel_prob:
m_i = random.randint(0, 31)
k = motion_kernels[f'{m_i:02d}']
img_in = cv2.filter2D(img_in, -1, k)
kernel = gaussian_kernels.random_mixed_kernels(
kernel_list,
kernel_prob,
blur_kernel_size,
blur_sigma,
blur_sigma,
[-math.pi, math.pi],
noise_range=None)
img_in = cv2.filter2D(img_in, -1, kernel)
scale = np.random.uniform(downsample_range[0], downsample_range[1])
img_in = cv2.resize(img_in, (int(gt_size // scale), int(gt_size // scale)), interpolation=cv2.INTER_LINEAR)
if noise_range is not None:
noise_sigma = np.random.uniform(noise_range[0] / 255., noise_range[1] / 255.)
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
img_in = img_in + noise
img_in = np.clip(img_in, 0, 1)
if jpeg_range is not None:
jpeg_p = np.random.uniform(jpeg_range[0], jpeg_range[1])
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
img_in = cv2.resize(img_in, (in_size, in_size), interpolation=cv2.INTER_LINEAR)
img_in = np.clip(img_in * 255.0, 0, 255).astype(np.uint8)
if len(img_in.shape) == 3 and img_in.shape[2] == 3:
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2RGB)
return Image.fromarray(img_in)
def load_motion_kernels(motion_kernel_path='basicsr/data/motion-blur-kernels-32.pth'):
return torch.load(motion_kernel_path)
class ImageDegradationConfig:
def __init__(self,
gt_size=512,
in_size=512,
use_motion_kernel=False,
motion_kernel_path='basicsr/data/motion-blur-kernels-32.pth',
motion_kernel_prob=0.001,
kernel_list=['iso', 'aniso'],
kernel_prob=[0.5, 0.5],
blur_kernel_size=41,
blur_sigma=[1, 15],
downsample_range=[4, 30],
noise_range=[0, 20],
jpeg_range=[30, 80]):
self.gt_size = gt_size
self.in_size = in_size
self.use_motion_kernel = use_motion_kernel
self.motion_kernel_prob = motion_kernel_prob
self.kernel_list = kernel_list
self.kernel_prob = kernel_prob
self.blur_kernel_size = blur_kernel_size
self.blur_sigma = blur_sigma
self.downsample_range = downsample_range
self.noise_range = noise_range
self.jpeg_range = jpeg_range
self.motion_kernels = None
if self.use_motion_kernel:
self.motion_kernels = load_motion_kernels(motion_kernel_path)
def degrade(self, img_gt):
return degrade_image(
img_gt=img_gt,
gt_size=self.gt_size,
in_size=self.in_size,
use_motion_kernel=self.use_motion_kernel,
motion_kernels=self.motion_kernels,
motion_kernel_prob=self.motion_kernel_prob,
kernel_list=self.kernel_list,
kernel_prob=self.kernel_prob,
blur_kernel_size=self.blur_kernel_size,
blur_sigma=self.blur_sigma,
downsample_range=self.downsample_range,
noise_range=self.noise_range,
jpeg_range=self.jpeg_range
)
if __name__ == "__main__":
config = ImageDegradationConfig(
gt_size=512,
in_size=512,
use_motion_kernel=False,
motion_kernels=None,
kernel_list=['iso', 'aniso'],
kernel_prob=[0.5, 0.5],
blur_kernel_size=41,
blur_sigma=[1, 15],
downsample_range=[4, 30],
noise_range=[0, 20],
jpeg_range=[30, 80],
)
img_degraded = config.degrade(img_gt)
pass