import time
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
import datasets
import models
batch_size = 24
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device")
training_data = datasets.DigiFaceDataset(
path = "datasets/DigiFace/minitest", #subjects_0-1999_72_imgs"
split='train'
#transform=transforms.RandomRotatiion,
#download=True
)
testing_data = datasets.DigiFaceDataset(
path = "datasets/DigiFace/minitest", #subjects_0-1999_72_imgs"
split='test'
#transform=transforms.RandomRotatiion,
#download=True
)
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(testing_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
model = models.Backbone().to(device)
def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(model)
print(count_parameters(model))
#model.forward(training_data[0][0])
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9,
nesterov=True)
def train(dataloader, model, loss_fn, optimizer, isLastEpoch=False):
size = len(dataloader.dataset)
model.train()
start = time.time()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)#, isNorm=False, isPrint=False, visualize=False)
pred_loss = loss_fn(pred, y)
loss = pred_loss
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 50 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
end = time.time()
print("Epoch time: " + str((end - start)))
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 100
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer, t == epochs-1)
test(test_dataloader, model, loss_fn)
print("Done!")
print("Printing layer representations")
with torch.no_grad():
i = 0
for batch, (X, y) in enumerate(test_dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)#, isNorm=False, isPrint=False, visualize=True)
i += 1
if i >= 0 :break
print("done.")
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")