mini-llama / src / rope_test.py
rope_test.py
Raw
import torch
import numpy as np

from rope import apply_rotary_emb

seed = 0

def construct_query() -> torch.Tensor:
    '''
    Shape: (batch_size, seqlen, n_local_heads, self.head_dim)
    '''
    return 2 * torch.ones([1, 2, 2, 4])

def construct_key() -> torch.Tensor:
    '''
    Shape: (batch_size, seqlen, n_local_kv_heads, self.head_dim)
    '''
    return 3 * torch.ones([1, 2, 2, 4])

def test_apply_rotary_emb() -> tuple[torch.Tensor, torch.Tensor]:
    rng = np.random.default_rng(seed)
    torch.manual_seed(seed)
    model = torch.nn.Linear(3, 2, bias=False)

    test_query = construct_query()
    test_key = construct_key()
    rotary_embeddings = apply_rotary_emb(test_query, test_key, 4, 20)
    rotary_query_embedding, rotary_key_embedding = rotary_embeddings
    return rotary_query_embedding, rotary_key_embedding

actual_query_rope_embedding, actual_key_rope_embedding = test_apply_rotary_emb()
ref_query_rope_embedding, ref_key_rope_embedding = torch.load("./rotary_embedding_actual.data")

assert torch.allclose(ref_query_rope_embedding, actual_query_rope_embedding)
assert torch.allclose(ref_key_rope_embedding, actual_key_rope_embedding)
print("Rotary embedding test passed!")