{ "cells": [ { "cell_type": "code", "execution_count": 21, "id": "ba837a2c", "metadata": {}, "outputs": [], "source": [ "from sklearn.cluster import KMeans\n", "import pandas as pd\n", "import os\n", "import matplotlib.pyplot as plt\n", "from kneed import KneeLocator" ] }, { "cell_type": "code", "execution_count": 4, "id": "dbef6d56", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'/Users/mohi9282/Desktop/iNeuron/Machine Learning/Projects/waferFaultDetection/waferClassifier'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "os.getcwd()" ] }, { "cell_type": "code", "execution_count": 14, "id": "e6c82a4e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Unnamed: 0</th>\n", " <th>Sensor - 1</th>\n", " <th>Sensor - 2</th>\n", " <th>Sensor - 3</th>\n", " <th>Sensor - 4</th>\n", " <th>Sensor - 5</th>\n", " <th>Sensor - 7</th>\n", " <th>Sensor - 8</th>\n", " <th>Sensor - 9</th>\n", " <th>Sensor - 10</th>\n", " <th>...</th>\n", " <th>Sensor - 581</th>\n", " <th>Sensor - 582</th>\n", " <th>Sensor - 583</th>\n", " <th>Sensor - 584</th>\n", " <th>Sensor - 585</th>\n", " <th>Sensor - 586</th>\n", " <th>Sensor - 587</th>\n", " <th>Sensor - 588</th>\n", " <th>Sensor - 589</th>\n", " <th>Sensor - 590</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0</td>\n", " <td>3073.48</td>\n", " <td>2467.18</td>\n", " <td>2200.2000</td>\n", " <td>1121.1875</td>\n", " <td>1.3171</td>\n", " <td>103.8978</td>\n", " <td>0.1191</td>\n", " <td>1.4015</td>\n", " <td>0.0095</td>\n", " <td>...</td>\n", " <td>0.004133</td>\n", " <td>64.582000</td>\n", " <td>0.5046</td>\n", " <td>0.0065</td>\n", " <td>0.0022</td>\n", " <td>1.2845</td>\n", " <td>0.0267</td>\n", " <td>0.0174</td>\n", " <td>0.0050</td>\n", " <td>65.1609</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>3027.61</td>\n", " <td>2430.03</td>\n", " <td>2219.7667</td>\n", " <td>2086.4710</td>\n", " <td>1.3381</td>\n", " <td>98.8900</td>\n", " <td>0.1234</td>\n", " <td>1.4090</td>\n", " <td>0.0160</td>\n", " <td>...</td>\n", " <td>0.003000</td>\n", " <td>50.177800</td>\n", " <td>0.4984</td>\n", " <td>0.0130</td>\n", " <td>0.0033</td>\n", " <td>2.6161</td>\n", " <td>0.0267</td>\n", " <td>0.0174</td>\n", " <td>0.0050</td>\n", " <td>65.1609</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2</td>\n", " <td>2950.97</td>\n", " <td>2533.95</td>\n", " <td>2249.2556</td>\n", " <td>2065.0624</td>\n", " <td>2.1216</td>\n", " <td>95.7967</td>\n", " <td>0.1222</td>\n", " <td>1.3418</td>\n", " <td>-0.0112</td>\n", " <td>...</td>\n", " <td>0.005633</td>\n", " <td>100.867867</td>\n", " <td>0.5062</td>\n", " <td>0.0117</td>\n", " <td>0.0033</td>\n", " <td>2.3019</td>\n", " <td>0.0267</td>\n", " <td>0.0174</td>\n", " <td>0.0050</td>\n", " <td>65.1609</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>3</td>\n", " <td>3093.12</td>\n", " <td>2500.90</td>\n", " <td>2219.7667</td>\n", " <td>2086.4710</td>\n", " <td>1.3381</td>\n", " <td>98.8900</td>\n", " <td>0.1234</td>\n", " <td>1.4117</td>\n", " <td>0.0087</td>\n", " <td>...</td>\n", " <td>0.010500</td>\n", " <td>106.558200</td>\n", " <td>0.5038</td>\n", " <td>0.0133</td>\n", " <td>0.0040</td>\n", " <td>2.6341</td>\n", " <td>0.0292</td>\n", " <td>0.0311</td>\n", " <td>0.0105</td>\n", " <td>106.5582</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4</td>\n", " <td>2988.76</td>\n", " <td>2497.58</td>\n", " <td>2153.9778</td>\n", " <td>1192.6994</td>\n", " <td>1.3522</td>\n", " <td>100.9367</td>\n", " <td>0.1225</td>\n", " <td>1.4590</td>\n", " <td>-0.0074</td>\n", " <td>...</td>\n", " <td>0.007000</td>\n", " <td>76.751000</td>\n", " <td>0.5001</td>\n", " <td>0.0099</td>\n", " <td>0.0025</td>\n", " <td>1.9807</td>\n", " <td>0.0282</td>\n", " <td>0.0217</td>\n", " <td>0.0070</td>\n", " <td>76.7510</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 475 columns</p>\n", "</div>" ], "text/plain": [ " Unnamed: 0 Sensor - 1 Sensor - 2 Sensor - 3 Sensor - 4 Sensor - 5 \\\n", "0 0 3073.48 2467.18 2200.2000 1121.1875 1.3171 \n", "1 1 3027.61 2430.03 2219.7667 2086.4710 1.3381 \n", "2 2 2950.97 2533.95 2249.2556 2065.0624 2.1216 \n", "3 3 3093.12 2500.90 2219.7667 2086.4710 1.3381 \n", "4 4 2988.76 2497.58 2153.9778 1192.6994 1.3522 \n", "\n", " Sensor - 7 Sensor - 8 Sensor - 9 Sensor - 10 ... Sensor - 581 \\\n", "0 103.8978 0.1191 1.4015 0.0095 ... 0.004133 \n", "1 98.8900 0.1234 1.4090 0.0160 ... 0.003000 \n", "2 95.7967 0.1222 1.3418 -0.0112 ... 0.005633 \n", "3 98.8900 0.1234 1.4117 0.0087 ... 0.010500 \n", "4 100.9367 0.1225 1.4590 -0.0074 ... 0.007000 \n", "\n", " Sensor - 582 Sensor - 583 Sensor - 584 Sensor - 585 Sensor - 586 \\\n", "0 64.582000 0.5046 0.0065 0.0022 1.2845 \n", "1 50.177800 0.4984 0.0130 0.0033 2.6161 \n", "2 100.867867 0.5062 0.0117 0.0033 2.3019 \n", "3 106.558200 0.5038 0.0133 0.0040 2.6341 \n", "4 76.751000 0.5001 0.0099 0.0025 1.9807 \n", "\n", " Sensor - 587 Sensor - 588 Sensor - 589 Sensor - 590 \n", "0 0.0267 0.0174 0.0050 65.1609 \n", "1 0.0267 0.0174 0.0050 65.1609 \n", "2 0.0267 0.0174 0.0050 65.1609 \n", "3 0.0292 0.0311 0.0105 106.5582 \n", "4 0.0282 0.0217 0.0070 76.7510 \n", "\n", "[5 rows x 475 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv('Data_Preprocessing/clean_X.csv')\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 15, "id": "3a93f98d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(837, 474)\n" ] } ], "source": [ "X = data.drop('Unnamed: 0', axis=1)\n", "print(X.shape)" ] }, { "cell_type": "code", "execution_count": 16, "id": "a18bd0ce", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[84331035818.0085,\n", " 44028817403.003654,\n", " 34181715443.897434,\n", " 27505250479.50228,\n", " 24487238145.79915,\n", " 21857237993.667805,\n", " 19913967751.71556,\n", " 18149083253.730568,\n", " 16667110417.11506,\n", " 15501355292.352467]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wcss = []\n", "for i in range(1,11):\n", " kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)\n", " pred = kmeans.fit(X)\n", " wcss.append(pred.inertia_)\n", " \n", "wcss" ] }, { "cell_type": "code", "execution_count": 20, "id": "e90ea461", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'WCSS')" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8HeV97/HPT/u+6xjvuyWWsFmAFzCWaShZISlJwyuFkI2mEELSLLfJbW9u25u0N6G5WRqaOIGQpBSSEJaSUJbGGzaGYBsDNt6w8G6sxZZl2ZKt5Xf/OCMjG9uSsUZzlu/79TovnTNnpOenY+v7zDzzzIy5OyIikvoyoi5ARESGhwJfRCRNKPBFRNKEAl9EJE0o8EVE0oQCX0QkTSjwJWWY2c1mtrTfazezKVHW1MfM5prZjqjrkPSmwJekYmZbzKzDzNr7Pf416rrgaIfTE9TUZmarzey9b+Pn3Gtm/yeMGiW9ZUVdgMjb8D53/++oiziJ5e5+uZllALcBvzazMVEXJQLawpfU924zazCzZjP7dhDEmFmGmf2tmW01s0Yz+4WZlQbv/dzMvhg8Hx0MDd0avJ5iZnvNzE7VqLv3AvcA+cCk4983s7PNbJGZtZrZWjN7f7D8FuCjwFeCPYXHhvCzkDSnwJdU9wGgDrgYuBb4RLD85uBRTzyQi4C+oaHFwNzg+ZVAQ/AVYA7wjA9wTRIzywI+BbQDm457Lxt4DHgKiAG3A/eZWY27zwfuA77l7kXu/r7T/YVFTibhAt/M7gm2uNYMYt05ZrbKzLrN7Prj3vuYmW0KHh8Lr2KJwCPBlnHf49OnWPf/uvted98GfBe4IVj+UeA77t7g7u3AV4GPBEG9GLgi2BuYA3wLmB1835XB+yczw8xagTeCtj7g7vuPX4d4B/PP7n7E3RcAv+tXm0goEi7wgXuBawa57jbiW2n/0X+hmVUAXwcuAy4Fvm5m5UNXokTsOncv6/f4ySnW3d7v+VZgVPB8VPC6/3tZwAh330x8y/xC4AriYbzLzGoYOPCfC2qqcvcZJznWMArYHgz79G9/9Cl+rsgZS7jAd/clwN7+y8xsspk9YWYrzewZM6sN1t3i7i8Dvcf9mD8Fng627PYBTzP4TkRSy9h+z8cBu4Lnu4Dxx73XDewJXi8Grgdy3H1n8PomoBxYfYY17QLG9h1P6Nf+zuC5LmEroUi4wD+J+cDt7j4d+BJw1wDrj+bYLbsdaOspXX3ZzMrNbCxwB/CrYPn9wBfMbKKZFQHfBH7l7t3B+4uBzwJLgteLiI+1L3X3njOs6XngIPEDs9lmNhd4H/BA8P4eTnCgV+RMJfy0zOCPcRbwm34TI3IH+rYTLNNWU+p4zMz6h+7T7v6Bk6z7KLASKCU+XHh3sPwe4kMrS4A84Enigd5nMVDMm4G/FCjo9/ptc/cjwaycu4gfO9gJ3OTu64NV7ib+/70VWOTu151pmyIAlog3QDGzCcDv3P08MysBNrj7yFOsf2+w/oPB6xuAue7+l8HrHxP/w7k/7NpFRBJVwg/puHsb8LqZfQjA4i4Y4NueBK4OduXLgauDZSIiaSvhAt/M7geWAzVmtsPMPkl8Ct0nzewlYC3x+dSY2SXB9Uk+BPzYzNYCuPte4B+BF4LHPwTLRETSVkIO6YiIyNBLuC18EREJR0LN0qmqqvIJEyZEXYaISNJYuXJls7tXD2bdhAr8CRMmsGLFiqjLEBFJGma2deC14jSkIyKSJhT4IiJpQoEvIpImFPgiImlCgS8ikiYU+CIiaUKBLyKSJpI+8Du7evjx4s0s3dQcdSkiIgkt6QM/JzODnzzTwK9WbB94ZRGRNJb0gZ+RYVw5LcaSjU109xx/p0MREemT9IEPMK82xv6OLl7c3hp1KSIiCSslAv+KaVVkZRgL1jdGXYqISMJKicAvycumbkI5CxX4IiInlRKBD1BfE2P9GwfY2doRdSkiIgkpZQJ/Xm0MgEUbtJUvInIiKRP4U2JFjCnP17COiMhJpEzgmxnzamMse62Fzq6eqMsREUk4KRP4APW1MTq6eniuoSXqUkREEk6ogW9mXzCztWa2xszuN7O8MNubOamSvOwMDeuIiJxAaIFvZqOBzwF17n4ekAl8JKz2APKyM5k1uYqFG5pw9zCbEhFJOmEP6WQB+WaWBRQAu0Juj/raGNv2HmJz08GwmxIRSSqhBb677wTuBLYBu4H97v7U8euZ2S1mtsLMVjQ1NZ1xu/U11QAa1hEROU6YQzrlwLXARGAUUGhmf3H8eu4+393r3L2uurr6jNsdU17AtBFFusyCiMhxwhzS+RPgdXdvcvcu4CFgVojtHVVfG+OFLXtp6+wajuZERJJCmIG/DZhhZgVmZsBVwLoQ2ztqXk2M7l5nmW6KIiJyVJhj+M8DDwKrgFeCtuaH1V5/08eXU5KXpWEdEZF+ssL84e7+deDrYbZxIlmZGcyZVs3CDU309joZGTbcJYiIJJyUOtO2v/qaGM3th1mza3/UpYiIJISUDfy5NdWYwcL1Zz7VU0QkFaRs4FcW5XLBmDIW6HLJIiJACgc+xK+R//KOVprbD0ddiohI5FI+8N1h0QYN64iIpHTgnzOyhOriXF1mQUSEFA/8jAyjvqaaJZua6OrpjbocEZFIpXTgQ3xY50BnNyu37ou6FBGRSKV84F8+tZrsTNOwjoikvZQP/KLcLC6dWKHLLIhI2kv5wIf4WbebGtvZvvdQ1KWIiEQmPQK/NgbAIp2EJSJpLC0Cf1JVIeMrCzSsIyJpLS0C38yor4nx7OYWOo70RF2OiEgk0iLwIT4983B3L8sbdFMUEUlPaRP4l06sID87U8M6IpK20ibw87IzmT2lioXrm3D3qMsRERl2aRP4EB/W2dnawabG9qhLEREZdmkV+PW11QAa1hGRtBRa4JtZjZmt7vdoM7PPh9XeYIwszefskSUKfBFJS6EFvrtvcPcL3f1CYDpwCHg4rPYGq76mmpVb97H/UFfUpYiIDKvhGtK5Ctjs7luHqb2Tmlcbo6fXeeY13RRFRNLLcAX+R4D7T/SGmd1iZivMbEVTU/ghfNG4csoKsjWsIyJpJ/TAN7Mc4P3Ab070vrvPd/c6d6+rrq4OuxwyM4wrp1WzeEMTvb2aniki6WM4tvDfBaxy9z3D0NagzKuN0XLwCC/taI26FBGRYTMcgX8DJxnOicqcqdVkGCzUzc1FJI2EGvhmVgC8E3gozHZOV3lhDheNK9ddsEQkrYQa+O5+yN0r3X1/mO28HfNqY7yycz+NbZ1RlyIiMizS6kzb/upr+m6KomEdEUkPaRv4Z48s5qySPE3PFJG0kbaBb2bU11az9LVmjnT3Rl2OiEjo0jbwIT6s0364mxVb9kZdiohI6NI68GdPqSInM0PDOiKSFtI68Atzs7hsUgULNijwRST1pXXgQ3x6ZkPTQba2HIy6FBGRUKV94PdNz9RJWCKS6tI+8CdUFTKpqpAFmo8vIiku7QMfoL42xnMNLRw60h11KSIioVHgEx/HP9Ldy7LXWqIuRUQkNAp84JIJFRTmZGp6poikNAU+kJOVweVTq1i0oRF33RRFRFKTAj8wrzbG7v2drH/jQNSliIiEQoEf6JueqWEdEUlVCvxArCSP80aXaD6+iKQsBX4/9TUxVm3bR+uhI1GXIiIy5BT4/dTXxuh1WLxRJ2GJSOpR4PdzwZgyKgpzNKwjIilJgd9PZoYxd1o1izc20dOr6ZkiklpCDXwzKzOzB81svZmtM7OZYbY3FOprY+w71MXq7fuiLkVEZEiFvYX/PeAJd68FLgDWhdzeGZsztZrMDGPheo3ji0hqCS3wzawEmAPcDeDuR9y9Naz2hkppQTbTx5VrPr6IpJwwt/AnAU3Az8zsRTP7qZkVHr+Smd1iZivMbEVTU2JsVdfXxnh1dxtv7O+MuhQRkSETZuBnARcD/+buFwEHgb85fiV3n+/ude5eV11dHWI5gzevNrgpim59KCIpJMzA3wHscPfng9cPEu8AEt60EUWMLsvXsI6IpJTQAt/d3wC2m1lNsOgq4NWw2htKZsbcmmqWvdbM4e6eqMsRERkSYc/SuR24z8xeBi4Evhlye0NmXm2MQ0d6+OPre6MuRURkSGSF+cPdfTVQF2YbYZk1uYrcrAwWrG/kiqmJcWxBRORM6Ezbk8jPyWTm5EpdZkFEUoYC/xTm1cbY0nKIhqb2qEsRETljCvxT6LspysINiXF+gIjImVDgn8LYigKmxIo0rCMiKUGBP4B5tTGef72F9sPdUZciInJGFPgDqK+J0dXjLN3UHHUpIiJnRIE/gLoJ5RTnZrFIl1kQkSSnwB9AdmYGV0yrYuGGRtx1UxQRSV4K/EGor4mxp+0wa3e1RV2KiMjbpsAfhLl90zM1W0dEkpgCfxCqi3O5YEwpCzSOLyJJTIE/SPW1MVZvb2XvwSNRlyIi8racMvDN7BIzO6vf65vM7FEz+76ZVYRfXuKor4nhDos3aitfRJLTQFv4PwaOAJjZHOCfgV8A+4H54ZaWWN4xupSqolwW6ObmIpKkBro8cqa7910Q/s+B+e7+W+C3ZrY63NISS0ZG/KYoT619g+6eXrIyNRomIslloNTKNLO+TuEqYEG/90K9ln4imlcbo62zm1XbWqMuRUTktA0U+PcDi83sUaADeAbAzKYQH9ZJK5dPrSIrw3RzcxFJSqcMfHf/BvBF4F7gcn/zVNMM4rcvTCslednUTSjXfHwRSUoDzdIpAFa6+8PuftDMaszsC8B57r5qeEpMLPNqY6x/4wA7WzuiLkVE5LQMNKTzBDABjg7jLAcmAbeZ2T+FW1pimlers25FJDkNFPjl7r4peP4x4H53vx14F/DegX64mW0xs1fMbLWZrTjDWhPC5OoixlbkK/BFJOkMFPj9Lw85D3gawN2PAL2DbKPe3S9097q3UV/CMTPqa2Is29xMZ1dP1OWIiAzaQIH/spndGYzbTwGeAjCzstArS2D1tTE6u3p5rqEl6lJERAZtoMD/NNBMfBz/anc/FCw/B7hzED/fgafMbKWZ3XKiFczsFjNbYWYrmpqS4yzWmZMqycvO0LCOiCSVgQK/CHjM3e9w95f6LW8jfkB3ILPd/WLiY/63BZdnOIa7z3f3Onevq66uHnThUcrLzmT25CoW6KYoIpJEBgr8HwBVJ1g+GvjeQD/c3XcFXxuBh4FLT7fARFVfG2P73g42Nx2MuhQRkUEZKPDf4e6Lj1/o7k8C55/qG82s0MyK+54DVwNr3m6hiaZe0zNFJMkMFPjZb/M9gBHAUjN7Cfgj8Ht3H8wwUFIYXZZPzYhiFijwRSRJDHQBtE1m9m53f7z/QjN7F9Bwqm909wbggjOsL6HV18b46TMNtHV2UZI3UP8nIhKtgQL/88DvzezDwMpgWR0wk0GceJXq5tXG+NHizSzd1My73zEy6nJERE5poCGd9wCfBJYB44PHYuB8d98Ycm0J7+JxZZTkZWkcX0SSwkBb+GOADwNnAy8BzwJ7gAKgM9zSEl9WZgZzplWzcEMTvb1ORoZFXZKIyEkNdHnkL7n7LOIHYL8G7AU+Aawxs1eHob6EN682RnP7YdbsSrvbA4hIkhnsffrygRKgNHjsAp4Pq6hkcuW0aszQbB0RSXgDXQ9/vpktA35F/EDts8CHgjNjPz4cBSa6yqJcLhxbpnF8EUl4A23hjwNygTeAncAOQDd0Pc68mhgv7dhP04HDUZciInJSA43hXwNcwpsXSvsi8IKZPWVmfx92ccmi76zbxRuT4+JvIpKeBhzD97g1wOPAfxGfojkZuCPk2pLGuaNKiBXnalhHRBLaQGP4nzOzB8xsO7CE+MlWG4APAhXDUF9S6LspypKNTXT1DPa+MCIiw2ugLfwJwIPApe4+yd1vdPe73P0ld1ey9VNfG+PA4W6eWPNG1KWIiJzQKU+8cve/Hq5Ckt2V06qpPauYz/9qNa0dXdw4Y3zUJYmIHGOw8/BlAPk5mfzmMzO5clo1f/fIGr7+6Bq6NbwjIglEgT+EivOy+clNddwyZxI/X76Vj9/7Avs7uqIuS0QEUOAPucwM42vvPptv/dn5PNfQwgfvWsaWZt0VS0Sip8APyYcvGcsvP3kZew8e4bq7lrF8c0vUJYlImlPgh2jGpEoeuW02VUW53Hj389z/x21RlyQiaUyBH7LxlYU8dOssZk2p4qsPvcI/PPYqPb0edVkikoYU+MOgJC+bez5Wx8dnT+CeZa/zyZ+/wIFOHcwVkeEVeuCbWaaZvWhmvwu7rUSWlZnB1993Lt/4wHks3dTMB+96lm0th6IuS0TSyHBs4d8BrBuGdpLCRy8bzy8+cSmNBw5z3V3L+OPre6MuSUTSRKiBb2ZjiN8X96dhtpNsZk2p4pHbZlOWn81Hf/ocv1mxPeqSRCQNhL2F/13gK4BOOT3OxKpCHr51NpdNrOTLD77MPz2+TgdzRSRUoQW+mb0XaHT3lQOsd4uZrTCzFU1N6XU9+dKCbH728Uu4ccZ4frykgb/85QraD3dHXZaIpKgwt/BnA+83sy3AA8A8M/v341dy9/nBLRPrqqurQywnMWVnZvCP153HP1x7Lgs3NHH9vz3Ljn06mCsiQy+0wHf3r7r7GHefAHwEWODufxFWe8nuppkT+NnNl7CztYPrfriMlVt1MFdEhpbm4SeQOdOqefjW2RTlZnHD/Od5aNWOqEsSkRQyLIHv7ovc/b3D0VaymxIr4pHbZjN9fDl//euX+NYT6+nVwVwRGQLawk9AZQU5/OKTl3LDpWO5a9Fm/uq+lRzUwVwROUMK/ASVnZnBNz/wDv7Xe8/h6Vf38KEfLWdXa0fUZYlIElPgJzAz4xOXT+Tumy9h295DvP9fl/Hitn1RlyUiSUqBnwTqa2I8dOss8nMy+PP5z/Ho6p1RlyQiSUiBnySmjSjm0dsu58IxZdzxwGq+8/RGHcwVkdOiwE8iFYU5/PJTl/Kh6WP4/h82cfv9L9JxpCfqskQkSWRFXYCcntysTL51/flMHVHEP/3XerbtPcRPbqrjrNK8qEsTkQSnLfwkZGbcMmcyP72pjoamdq794VJe3tEadVkikuAU+EnsqrNH8NtbZ5GVkcGHf7yc37+8O+qSRCSBKfCTXO1ZJTz62dmcO6qU2/5jFd//wybcdTBXRN5KgZ8Cqopyue9Tl/HBi0bznac38rkHVrP/kO6ZKyLHUuCniLzsTP7lwxfwlWtq+N3Lu7jyzoXcu+x1unp07xkRiVPgpxAz49a5U/j97Vdw9lkl/O/HXuWa7y5h4fpGDfOIiAI/FZ0zqoT/+PRlzL9xOj29zsfvfYGb7vkjG944EHVpIhIhBX6KMjOuPvcsnvrClfzte87mpe2tvOt7S/ifD79CS/vhqMsTkQgo8FNcTlYGn7piEou/XM+NM8bzwAvbmfvtRcxfspnD3TpLVySdKPDTRHlhDn9/7Xk8+fkrqJtQzjcfX8/V/28JT6zZrfF9kTShwE8zU2LF/Ozjl/LzT1xKTmYGn/n3VXxk/nOs2bk/6tJEJGQK/DR15bRq/uuOK/jH685jU2M77/vXpXz5Ny/R2NYZdWkiEhIFfhrLyszgxhnjWfiluXz6ikk8snonc+9cxA/+sInOLo3vi6Sa0ALfzPLM7I9m9pKZrTWzvw+rLTkzpfnZfO3dZ/Pff30lc6ZW8y9Pb2TenYt4dPVOje+LpJAwt/APA/Pc/QLgQuAaM5sRYntyhsZXFvKjG6fzwC0zKC/M4Y4HVvOBu55llW6rKJISQgt8j2sPXmYHD20uJoEZkyp57LOX8+3rz2dnawcfvOtZPnf/i+zUTdRFkpqFuctuZpnASmAK8EN3/x8nWOcW4BaAcePGTd+6dWto9cjpO3i4mx8t3sz8JQ0AfPqKSfzV3MkU5ureOSKJwMxWunvdoNYdjjFaMysDHgZud/c1J1uvrq7OV6xYEXo9cvp2tnbwrSfW8+jqXVQX5/Llq2v4s+ljyMywqEsTSWunE/jDMkvH3VuBRcA1w9GeDL3RZfl87yMX8fCtsxhTns9Xfvsy7/vBUpZvbom6NBEZpDBn6VQHW/aYWT7wJ8D6sNqT4XHRuHIe+qtZfP+Gi9jf0cUNP3mOv/zlCrY0H4y6NBEZQJgDsSOBnwfj+BnAr939dyG2J8PEzHj/BaO4+pwR3L30dX648DUWrF/MzbMm8Nl5UynNz466RBE5gWEZwx8sjeEnp8a2Tu58agO/WbmD8oIcvvDOadxwyViyMnVen0jYEm4MX1JbrCSPb11/AY999nKmjSji7x5Zw7u//wxPrn2DjiM6Y1ckUWgLX4aUu/PUq3v45uPr2NpyiOxM46Jx5cycVMmsyZVcOK6M3KzMqMsUSRkJNy1zsBT4qeNIdy/Pbm5meUMLyze3sGbnfnod8rIzqBtfwczJlcycXMn5o0s19CNyBk4n8HX2jIQiJyuDuTUx5tbEANjf0cUfX98b7wQ2t/DtJzcAUJSbxSUTypk1uYqZkys5e2SJ5vaLhESBL8OiND+bd54zgneeMwKAlvbDPNewl+UNzTy7uYWFG9YdXW/GpIr4ENCUKqbGijBTByAyFBT4EonKolzec/5I3nP+SAD2tHWyfHPL0WGgJ9fuAaCqKIcZkyqP7gFMqCxQByDyNmkMXxLS9r2HWL65heUN8U5gT1v8xusjS/OYOany6DGAMeUFEVcqEi2N4UvSG1tRwNiKAj58yVjcndebD/Ls5vgB4EUbm3joxZ0AjKsoYFYQ/jMnVRIryYu4cpHEpS18STq9vc7GxgPBEFALzzW0cKCzG4DJ1YXMmlzFrMmVXDapkorCnIirFQmXpmVKWunpdV7d1cazm+MHgF/YspdDwQlfZ48s4bKJFVw8vpyLx5UxuixfxwAkpSjwJa119fTy8o5Wlm9uYdlrLby4fR+dXb0AjCjJ5eJx5fHH+DLOHVVKXrZOBJPkpcAX6aerp5f1uw+watu+o4/te+N378rJzODc0SXHdAIjS/Mjrlhk8BT4IgNoPNDJqq2tvBh0AC/v2M/h7vhewMjSvCD848NA544qJSdLZwNLYtIsHZEBxIrzuOa8s7jmvLOA+KUg1u1uY+XWeAfw4rZWfv/KbiB+1vA7Rpdy8bgypo+P7wloNpAkI23hi5zEnrZOVgUdwMqt+1izs40jPfG9gNFl+Uf3AC4eV845o0rI1jWBJAIa0hEJweHuHtbuamPV1vgewKpt+9i9vxOIXxTu/NFlXDS+7OjxgOri3IgrlnSgwBcZJrtaO+IHgrfGO4C1u/bT1RP/mxpbkc/0o8cCyqk5q1h7ATLkNIYvMkxGleUzqiyf954/CoDOrh7W7tofPxawtZVnN7fwyOpdAGRlGBOrCpk6oogpsWKmxoqYNqKYCVUFukeADAsFvsgQysvOZPr4CqaPrwDiN4TZ2drBqm2trN/dxqbGdtbtPsATa96gN9i5zswwxlcWMC1WHHQGRUyNFTOpulDnCMiQUuCLhMjMGFNewJjyAt5/waijyzu7emhoOsimxgO81tjOpj3tbGw8wNPr9tAT9AQZBuMrC4MOIL43MCVWxOTqIvJz1BHI6Qst8M1sLPAL4CygF5jv7t8Lqz2RZJKXnck5o0o4Z1TJMcsPd/ewpfkQmxoPsHFPO681HmDTnnYWrm+kO+gIzGBseQHT+g0N9e0ZFORoG05OLsz/Hd3AF919lZkVAyvN7Gl3fzXENkWSWm5WJjVnFVNzVvExy7t6etnSfJBNwd7ApqAjWLyx6ehBYoAx5flBB1B89OuUWBFFueoIJMTAd/fdwO7g+QEzWweMBhT4IqcpOzMjHuIjiuEdby7v7ull695D8U5gz4F4h9DYzrLNLRwJzhwGGFWad7QTmFRdxKTqQiZVFVJdnKuLyaWRYZmWaWYTgCXAee7edtx7twC3AIwbN2761q1bQ69HJNV19/SyfV/H0U7gtcZ2Nu6JHy843K8jKMrNYmJVIROrCplUHXytKmJidaH2CpJEQs3DN7MiYDHwDXd/6FTrah6+SLh6e51d+zt4vfkgDU0H41+bD9LQ1M7O1g76x0GsODfoBIqY1K9DGFtRoPMJEkjCzMM3s2zgt8B9A4W9iIQvI+PNWUNXTK0+5r3Orh627T1EQ1M7Dc0Heb0p3hk8ufYN9h48cnS9rAxjXEVBvz2DIiZWFTK5WkNEiS7MWToG3A2sc/fvhNWOiAyNvOxMpo0oZtqI4re813roSL9OoP3oHsLS15qPGSIqzMlkYnUwLBTsFWiIKHGE+S8wG7gReMXMVgfLvubuj4fYpoiEoKwgh4vH5XDxuPJjlvf2OrvbOo92BA3BXsGL2/fx2Mu73jJE1P9YwbiKgmBvI5/S/GztGQyDMGfpLAX0LyiSwjIyjNFl+Ywuy+fyqVXHvPfmEFFwrKApvmfw5No9xwwRQfzg8Zjy/KMdQN/zsRXxr6X52cP5a6Us7WOJSChONUS0v6OLHfsOsX1vBzv2HWLHvo7gcYjlm5s5GNyTuE9xXla8AzhJp1Ccpw5hMBT4IjLsSvOzKc0v5dxRpW95z92DDqHjLZ3C1pZDLH2t+ehN6vv/vL5OYOzRDqGAMcEego4fxOlTEJGEYmaUFeRQVpDDeaNP3CHsO9TVb8/gzU6hoekgSzY209F1bIdQXpB9wj2D0WUFjCjJTZtjCAp8EUkqZkZFYQ4VhTmcP6bsLe+7O3sPHmH7vo63dAob9xxgwfrGY2YWQfw2ltVFucRKchlRnEesJJdYcS6xkrz41+I8RpTkUl6QQ0ZG8nYMCnwRSSlmRmVRLpVFuVw49sQdQnP7EXbsO8TO1g4a2w6z50AnTcHXzU3tLG9oYX9H11u+NyvDqD6mI8hlRN/zknjHECvJpbIwl8wE7BgU+CKSVszioV1dnMtFx00z7a+zq4emA4dpPNDJnrbDNLZ1sufAYRrb4su2tRxixZa97Dv01o4hM8OoKsqJdwD9O4hj9iDyqCrKIWsYz1pW4IuInEBediZjKwoYW1FwyvUOd/d1DG92Bo1th9nT1knjgcPs2t/J6u2ttBw3FRXil7quLMxlYlUBv/nMrLB+laMU+CIiZyA3K/Po5SqC4H+tAAAFaklEQVROpaunl+b2w0f3FuIdRPzrcFHgi4gMg+zMDEaW5jOyND+yGnTJOxGRNKHAFxFJEwp8EZE0ocAXEUkTCnwRkTShwBcRSRMKfBGRNKHAFxFJE+b970EWMTNrArZGXccZqgKaoy4iQeizOJY+j2Pp83jTmXwW4929euDVEizwU4GZrXD3uqjrSAT6LI6lz+NY+jzeNFyfhYZ0RETShAJfRCRNKPCH3vyoC0gg+iyOpc/jWPo83jQsn4XG8EVE0oS28EVE0oQCX0QkTSjwh4CZjTWzhWa2zszWmtkdUdcUNTPLNLMXzex3UdcSNTMrM7MHzWx98H9kZtQ1RcnMvhD8nawxs/vNLC/qmoaTmd1jZo1mtqbfsgoze9rMNgVfT36z3TOgwB8a3cAX3f1sYAZwm5mdE3FNUbsDWBd1EQnie8AT7l4LXEAafy5mNhr4HFDn7ucBmcBHoq1q2N0LXHPcsr8B/uDuU4E/BK+HnAJ/CLj7bndfFTw/QPwPenS0VUXHzMYA7wF+GnUtUTOzEmAOcDeAux9x99Zoq4pcFpBvZllAAbAr4nqGlbsvAfYet/ha4OfB858D14XRtgJ/iJnZBOAi4PloK4nUd4GvAL1RF5IAJgFNwM+CIa6fmllh1EVFxd13AncC24DdwH53fyraqhLCCHffDfENSCAWRiMK/CFkZkXAb4HPu3tb1PVEwczeCzS6+8qoa0kQWcDFwL+5+0XAQULaXU8Gwdj0tcBEYBRQaGZ/EW1V6UOBP0TMLJt42N/n7g9FXU+EZgPvN7MtwAPAPDP792hLitQOYIe79+3xPUi8A0hXfwK87u5N7t4FPATMirimRLDHzEYCBF8bw2hEgT8EzMyIj9Guc/fvRF1PlNz9q+4+xt0nED8Yt8Dd03YLzt3fALabWU2w6Crg1QhLito2YIaZFQR/N1eRxgex+/lP4GPB848Bj4bRSFYYPzQNzQZuBF4xs9XBsq+5++MR1iSJ43bgPjPLARqAj0dcT2Tc/XkzexBYRXx224uk2SUWzOx+YC5QZWY7gK8D/wz82sw+SbxT/FAobevSCiIi6UFDOiIiaUKBLyKSJhT4IiJpQoEvIpImFPgiImlCgS8py8zOMrMHzGyzmb1qZo+b2bT+Vyk8zZ93s5mNGuo6RYaLAl9SUnBSz8PAInef7O7nAF8DRpzBj72Z+OUATqcOnesiCUP/GSVV1QNd7v6jvgXuvjq4uB0Q32Infpnezwavf0f8wl7PED9zug5w4B5ge/D6PjPrAGYC5wDfAYqAZuBmd99tZouAZ4mfkPefZraN+Mk1PcQvFjYntN9a5BQU+JKqzgPe7gXcLgRGB9drx8zK3L3VzD4LfMndVwTXTvoBcK27N5nZnwPfAD4R/Iwyd78y+P5XgD91951mVnYmv5TImVDgi7xVAzDJzH4A/B440eV7a4h3Kk/HR4/IJH653z6/6vd8GXCvmf2a+MXCRCKhwJdUtRa4foB1ujn2OFYegLvvM7MLgD8FbgM+zJtb7n0MWOvuJ7td4cG+J+7+GTO7jPhNYVab2YXu3jLo30RkiOigraSqBUCumX26b4GZXQKM77fOFuBCM8sws7HApcF6VUCGu/8W+DvevJzxAaA4eL4BqO67P62ZZZvZuScqxMwmu/vz7v6/iI/1jx2i31HktGgLX1KSu7uZfQD4rpn9DdBJPOA/32+1ZcDrwCvAGuJXcIT47Sl/ZmZ9G0RfDb7eC/yo30Hb64Hvm1kp8b+l7xLfszjet81sKvG9gj8ALw3F7yhyunS1TBGRNKEhHRGRNKHAFxFJEwp8EZE0ocAXEUkTCnwRkTShwBcRSRMKfBGRNPH/AZPTmaKmhYvMAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(range(1,11), wcss)\n", "plt.title('Elbow Plot')\n", "plt.xlabel('Clusters')\n", "plt.ylabel('WCSS')" ] }, { "cell_type": "code", "execution_count": 24, "id": "44b8474e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "knee_loc = KneeLocator(range(1,11), wcss, curve='convex', direction='decreasing')\n", "optimal_clusters = knee_loc.knee\n", "optimal_clusters\n" ] }, { "cell_type": "code", "execution_count": 33, "id": "ac186e79", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Elapsed = 0.0022 mins\n" ] } ], "source": [ "import time\n", "start = time.time()\n", "kmeans = KMeans(n_clusters=optimal_clusters, init=\"k-means++\", random_state=42)\n", "preds = kmeans.fit_predict(X)\n", "X['Cluster'] = preds\n", "print(f'Elapsed = {(time.time()-start)/60:.4f} mins')" ] }, { "cell_type": "code", "execution_count": 26, "id": "bf71da15", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Sensor - 1</th>\n", " <th>Sensor - 2</th>\n", " <th>Sensor - 3</th>\n", " <th>Sensor - 4</th>\n", " <th>Sensor - 5</th>\n", " <th>Sensor - 7</th>\n", " <th>Sensor - 8</th>\n", " <th>Sensor - 9</th>\n", " <th>Sensor - 10</th>\n", " <th>Sensor - 11</th>\n", " <th>...</th>\n", " <th>Sensor - 582</th>\n", " <th>Sensor - 583</th>\n", " <th>Sensor - 584</th>\n", " <th>Sensor - 585</th>\n", " <th>Sensor - 586</th>\n", " <th>Sensor - 587</th>\n", " <th>Sensor - 588</th>\n", " <th>Sensor - 589</th>\n", " <th>Sensor - 590</th>\n", " <th>Cluster</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>3073.48</td>\n", " <td>2467.18</td>\n", " <td>2200.2000</td>\n", " <td>1121.1875</td>\n", " <td>1.3171</td>\n", " <td>103.8978</td>\n", " <td>0.1191</td>\n", " <td>1.4015</td>\n", " <td>0.0095</td>\n", " <td>-0.0070</td>\n", " <td>...</td>\n", " <td>64.582000</td>\n", " <td>0.5046</td>\n", " <td>0.0065</td>\n", " <td>0.0022</td>\n", " <td>1.2845</td>\n", " <td>0.0267</td>\n", " <td>0.0174</td>\n", " <td>0.0050</td>\n", " <td>65.1609</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>3027.61</td>\n", " <td>2430.03</td>\n", " <td>2219.7667</td>\n", " <td>2086.4710</td>\n", " <td>1.3381</td>\n", " <td>98.8900</td>\n", " <td>0.1234</td>\n", " <td>1.4090</td>\n", " <td>0.0160</td>\n", " <td>0.0018</td>\n", " <td>...</td>\n", " <td>50.177800</td>\n", " <td>0.4984</td>\n", " <td>0.0130</td>\n", " <td>0.0033</td>\n", " <td>2.6161</td>\n", " <td>0.0267</td>\n", " <td>0.0174</td>\n", " <td>0.0050</td>\n", " <td>65.1609</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2950.97</td>\n", " <td>2533.95</td>\n", " <td>2249.2556</td>\n", " <td>2065.0624</td>\n", " <td>2.1216</td>\n", " <td>95.7967</td>\n", " <td>0.1222</td>\n", " <td>1.3418</td>\n", " <td>-0.0112</td>\n", " <td>0.0015</td>\n", " <td>...</td>\n", " <td>100.867867</td>\n", " <td>0.5062</td>\n", " <td>0.0117</td>\n", " <td>0.0033</td>\n", " <td>2.3019</td>\n", " <td>0.0267</td>\n", " <td>0.0174</td>\n", " <td>0.0050</td>\n", " <td>65.1609</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>3093.12</td>\n", " <td>2500.90</td>\n", " <td>2219.7667</td>\n", " <td>2086.4710</td>\n", " <td>1.3381</td>\n", " <td>98.8900</td>\n", " <td>0.1234</td>\n", " <td>1.4117</td>\n", " <td>0.0087</td>\n", " <td>-0.0108</td>\n", " <td>...</td>\n", " <td>106.558200</td>\n", " <td>0.5038</td>\n", " <td>0.0133</td>\n", " <td>0.0040</td>\n", " <td>2.6341</td>\n", " <td>0.0292</td>\n", " <td>0.0311</td>\n", " <td>0.0105</td>\n", " <td>106.5582</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2988.76</td>\n", " <td>2497.58</td>\n", " <td>2153.9778</td>\n", " <td>1192.6994</td>\n", " <td>1.3522</td>\n", " <td>100.9367</td>\n", " <td>0.1225</td>\n", " <td>1.4590</td>\n", " <td>-0.0074</td>\n", " <td>-0.0060</td>\n", " <td>...</td>\n", " <td>76.751000</td>\n", " <td>0.5001</td>\n", " <td>0.0099</td>\n", " <td>0.0025</td>\n", " <td>1.9807</td>\n", " <td>0.0282</td>\n", " <td>0.0217</td>\n", " <td>0.0070</td>\n", " <td>76.7510</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2990.69</td>\n", " <td>2428.85</td>\n", " <td>2249.2556</td>\n", " <td>2065.0624</td>\n", " <td>2.1216</td>\n", " <td>95.7967</td>\n", " <td>0.1222</td>\n", " <td>1.3682</td>\n", " <td>-0.0110</td>\n", " <td>-0.0085</td>\n", " <td>...</td>\n", " <td>79.617000</td>\n", " <td>0.4964</td>\n", " <td>0.0108</td>\n", " <td>0.0028</td>\n", " <td>2.1740</td>\n", " <td>0.0229</td>\n", " <td>0.0182</td>\n", " <td>0.0063</td>\n", " <td>79.6170</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2978.77</td>\n", " <td>2441.17</td>\n", " <td>2254.7111</td>\n", " <td>1981.2999</td>\n", " <td>2.1046</td>\n", " <td>90.9167</td>\n", " <td>0.1224</td>\n", " <td>1.4726</td>\n", " <td>0.0041</td>\n", " <td>0.0060</td>\n", " <td>...</td>\n", " <td>54.532300</td>\n", " <td>0.4966</td>\n", " <td>0.0078</td>\n", " <td>0.0024</td>\n", " <td>1.5646</td>\n", " <td>0.0229</td>\n", " <td>0.0182</td>\n", " <td>0.0063</td>\n", " <td>79.6170</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>3036.99</td>\n", " <td>2448.38</td>\n", " <td>2194.9555</td>\n", " <td>1108.2246</td>\n", " <td>1.2476</td>\n", " <td>102.2822</td>\n", " <td>0.1202</td>\n", " <td>1.5149</td>\n", " <td>0.0025</td>\n", " <td>-0.0063</td>\n", " <td>...</td>\n", " <td>94.756367</td>\n", " <td>0.4942</td>\n", " <td>0.0172</td>\n", " <td>0.0052</td>\n", " <td>3.4764</td>\n", " <td>0.0229</td>\n", " <td>0.0182</td>\n", " <td>0.0063</td>\n", " <td>79.6170</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>3006.75</td>\n", " <td>2517.09</td>\n", " <td>2254.7111</td>\n", " <td>1981.2999</td>\n", " <td>2.1046</td>\n", " <td>90.9167</td>\n", " <td>0.1224</td>\n", " <td>1.5901</td>\n", " <td>-0.0071</td>\n", " <td>0.0127</td>\n", " <td>...</td>\n", " <td>48.370800</td>\n", " <td>0.5020</td>\n", " <td>0.0111</td>\n", " <td>0.0031</td>\n", " <td>2.2182</td>\n", " <td>0.0506</td>\n", " <td>0.0245</td>\n", " <td>0.0093</td>\n", " <td>48.3708</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2960.63</td>\n", " <td>2570.46</td>\n", " <td>2206.1444</td>\n", " <td>1876.9899</td>\n", " <td>2.0607</td>\n", " <td>95.9511</td>\n", " <td>0.1246</td>\n", " <td>1.5341</td>\n", " <td>0.0350</td>\n", " <td>-0.0068</td>\n", " <td>...</td>\n", " <td>45.701900</td>\n", " <td>0.4937</td>\n", " <td>0.0146</td>\n", " <td>0.0035</td>\n", " <td>2.9664</td>\n", " <td>0.0437</td>\n", " <td>0.0200</td>\n", " <td>0.0074</td>\n", " <td>45.7019</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>10 rows × 475 columns</p>\n", "</div>" ], "text/plain": [ " Sensor - 1 Sensor - 2 Sensor - 3 Sensor - 4 Sensor - 5 Sensor - 7 \\\n", "0 3073.48 2467.18 2200.2000 1121.1875 1.3171 103.8978 \n", "1 3027.61 2430.03 2219.7667 2086.4710 1.3381 98.8900 \n", "2 2950.97 2533.95 2249.2556 2065.0624 2.1216 95.7967 \n", "3 3093.12 2500.90 2219.7667 2086.4710 1.3381 98.8900 \n", "4 2988.76 2497.58 2153.9778 1192.6994 1.3522 100.9367 \n", "5 2990.69 2428.85 2249.2556 2065.0624 2.1216 95.7967 \n", "6 2978.77 2441.17 2254.7111 1981.2999 2.1046 90.9167 \n", "7 3036.99 2448.38 2194.9555 1108.2246 1.2476 102.2822 \n", "8 3006.75 2517.09 2254.7111 1981.2999 2.1046 90.9167 \n", "9 2960.63 2570.46 2206.1444 1876.9899 2.0607 95.9511 \n", "\n", " Sensor - 8 Sensor - 9 Sensor - 10 Sensor - 11 ... Sensor - 582 \\\n", "0 0.1191 1.4015 0.0095 -0.0070 ... 64.582000 \n", "1 0.1234 1.4090 0.0160 0.0018 ... 50.177800 \n", "2 0.1222 1.3418 -0.0112 0.0015 ... 100.867867 \n", "3 0.1234 1.4117 0.0087 -0.0108 ... 106.558200 \n", "4 0.1225 1.4590 -0.0074 -0.0060 ... 76.751000 \n", "5 0.1222 1.3682 -0.0110 -0.0085 ... 79.617000 \n", "6 0.1224 1.4726 0.0041 0.0060 ... 54.532300 \n", "7 0.1202 1.5149 0.0025 -0.0063 ... 94.756367 \n", "8 0.1224 1.5901 -0.0071 0.0127 ... 48.370800 \n", "9 0.1246 1.5341 0.0350 -0.0068 ... 45.701900 \n", "\n", " Sensor - 583 Sensor - 584 Sensor - 585 Sensor - 586 Sensor - 587 \\\n", "0 0.5046 0.0065 0.0022 1.2845 0.0267 \n", "1 0.4984 0.0130 0.0033 2.6161 0.0267 \n", "2 0.5062 0.0117 0.0033 2.3019 0.0267 \n", "3 0.5038 0.0133 0.0040 2.6341 0.0292 \n", "4 0.5001 0.0099 0.0025 1.9807 0.0282 \n", "5 0.4964 0.0108 0.0028 2.1740 0.0229 \n", "6 0.4966 0.0078 0.0024 1.5646 0.0229 \n", "7 0.4942 0.0172 0.0052 3.4764 0.0229 \n", "8 0.5020 0.0111 0.0031 2.2182 0.0506 \n", "9 0.4937 0.0146 0.0035 2.9664 0.0437 \n", "\n", " Sensor - 588 Sensor - 589 Sensor - 590 Cluster \n", "0 0.0174 0.0050 65.1609 0 \n", "1 0.0174 0.0050 65.1609 0 \n", "2 0.0174 0.0050 65.1609 0 \n", "3 0.0311 0.0105 106.5582 0 \n", "4 0.0217 0.0070 76.7510 2 \n", "5 0.0182 0.0063 79.6170 0 \n", "6 0.0182 0.0063 79.6170 0 \n", "7 0.0182 0.0063 79.6170 1 \n", "8 0.0245 0.0093 48.3708 1 \n", "9 0.0200 0.0074 45.7019 0 \n", "\n", "[10 rows x 475 columns]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X.head(10)" ] }, { "cell_type": "code", "execution_count": null, "id": "37f43249", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 5 }