ViTGuard / target_models / TransformerModels_pretrain.py
TransformerModels_pretrain.py
Raw
# source code: https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/modeling_vit.py#L559
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import math

from os.path import join as pjoin

import torch
import torch.nn as nn

from scipy import ndimage

import TransformerConfigs_pretrain as configs


import math

logger = logging.getLogger(__name__)

ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu}

class ViTEmbeddings(nn.Module):
    """
    Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
    """

    def __init__(self, config):
        super().__init__()

        self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        self.patch_embeddings = ViTPatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.config = config

    def forward(self, pixel_values):

        batch_size, num_channels, height, width = pixel_values.shape
        embeddings = self.patch_embeddings(pixel_values)

        # add the [CLS] token to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings), dim=1)

        # add positional encoding to each token
        embeddings = embeddings + self.position_embeddings

        embeddings = self.dropout(embeddings)

        return embeddings #[N, #tokens, hidden_size]


class ViTPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size

        image_size = (image_size, image_size)
        patch_size = (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values):
        batch_size, num_channels, height, width = pixel_values.shape
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
                f" Expected {self.num_channels} but got {num_channels}."
            )
        if height != self.image_size[0] or width != self.image_size[1]:
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model"
                f" ({self.image_size[0]}*{self.image_size[1]})."
            )
        embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return embeddings

class ViTSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, output_attentions = False):

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(self.query(hidden_states))

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs #context_layer:[N, #tokens, #hidden_size]

class ViTSelfOutput(nn.Module):
    """
    The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states

class ViTAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = ViTSelfAttention(config)
        self.output = ViTSelfOutput(config)
        self.pruned_heads = set()

    def forward(self, hidden_states, output_attentions = False):
        self_outputs = self.attention(hidden_states, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs

class ViTIntermediate(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


class ViTOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        hidden_states = hidden_states + input_tensor

        return hidden_states

class ViTLayer(nn.Module):
    """This corresponds to the Block class in the timm implementation."""

    def __init__(self, config):
        super().__init__()
        self.attention = ViTAttention(config)
        self.intermediate = ViTIntermediate(config)
        self.output = ViTOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor, output_attentions = False):
        self_attention_outputs = self.attention(
            self.layernorm_before(hidden_states),  # in ViT, layernorm is applied before self-attention
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = attention_output + hidden_states

        # in ViT, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_states)
        layer_output = self.intermediate(layer_output)

        # second residual connection is done here
        layer_output = self.output(layer_output, hidden_states)

        outputs = (layer_output,) + outputs

        return outputs

class ViTEncoder(nn.Module):
    '''
    multiple of ViTlayer
    '''
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(self, hidden_states, output_attentions = False, output_hidden_states = False, return_dict = True):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states: #skip
                all_hidden_states = all_hidden_states + (hidden_states,)


            else:
                layer_outputs = layer_module(hidden_states, output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states: #skip
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict: #skip
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)

        return (hidden_states, all_hidden_states, all_self_attentions)


class ViTPooler(nn.Module):
    '''
    extract the CLS
    '''
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output #[N, hidden_size] 

class ViTModel_custom(nn.Module):
    def __init__(self, config, add_pooling_layer=True, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]):
        super().__init__()
        self.config = config

        self.embeddings = ViTEmbeddings(config)
        self.encoder = ViTEncoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.pooler = ViTPooler(config) if add_pooling_layer else None

        self.matrixMean = torch.ones(3, config.image_size, config.image_size)
        self.matrixMean[0] = self.matrixMean[0]*mean[0] # [224, 224]
        self.matrixMean[1] = self.matrixMean[1]*mean[1]
        self.matrixMean[2] = self.matrixMean[2]*mean[2]

        self.matrixStd = torch.ones(3, config.image_size, config.image_size)
        self.matrixStd[0] = self.matrixStd[0]*std[0]
        self.matrixStd[1] = self.matrixStd[1]*std[1]
        self.matrixStd[2] = self.matrixStd[2]*std[2]

    def get_input_embeddings(self) -> ViTPatchEmbeddings:
        return self.embeddings.patch_embeddings

    def forward(
        self,
        pixel_values,
        output_attentions = False,
        output_hidden_states = False,
        return_dict = True):
        """
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        """
        device_temp = pixel_values.device
        self.matrixMean= self.matrixMean.to(device_temp)
        self.matrixStd = self.matrixStd.to(device_temp)
        pixel_values = (pixel_values-self.matrixMean)/self.matrixStd

        embedding_output = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            embedding_output,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
            return head_outputs + encoder_outputs[1:]

        if output_attentions==True:
            return (sequence_output, pooled_output, encoder_outputs[-1])
        else:
            return (sequence_output, pooled_output)



class ViTForImageClassification(nn.Module):
    def __init__(self, config, model, num_labels):
        super(ViTForImageClassification, self).__init__()
        self.config = config
        self.vit = model
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.num_labels = num_labels
    def forward(self, pixel_values, output_attentions=False):
        outputs = self.vit(pixel_values=pixel_values, output_attentions=output_attentions)
        output = self.dropout(outputs[0][:,0])
        logits = self.classifier(output)
        if output_attentions==True:
            return (logits, outputs[-1]) # outputs[-1] is attention (tuple)
        else:
            return logits